

REPORT

TO

WINSTON LANGLEY PTY LIMITED

ON

COMBINED PHASE 1 & 2 ENVIRONMENTAL SITE ASSESSMENT

AT

45-47 TENNYSON AVENUE & 105 EASTERN ROAD, TURRAMURRA NSW

Reference: 689 – **E1256** – **AA**

Postal Address: 1/78 Owen Street

Glendenning NSW 2761

Tel: 02 9675 7522 Fax: 02 9675 7544

Email: office@csts.net.au
Website: www.csts.net.au
ABN: 44 106 976 738

Doc Ref: 689 - E1256 - AA

Sydney Markets NSW 2129

Attention: Mr K. Golwala

Trustee for 45 Tennyson Avenue Unit Trust C/-Harris Farm Markets Warehouse W, PO Box 57

Combined Phase 1 & 2 Environmental Site Assessment 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

© June 2018 Compaction & Soil Testing Services Pty Ltd All Rights Reserved

> 1/78 Owen Street Glendenning NSW 2761 Australia ABN 44 106 976 738 Phone: (02) 9675 7522

Fax: (02) 9675 7544 Email: office@csts.net.au Web: www.csts.net.au

All enquiries regarding this project are to be directed to the undersigned

Document Status				
Author		Reviewed		
Rido			Jes .	
Craig Ridley		Steve Rocks		
BAppŠc EnvHlth		BSc	(Biology / Geology)	
Environmental Consultant		Environmental Consultant		
Compaction & Soil Testing Services Pty Ltd		Compaction & Soil Testing Services Pty Ltd		
Revision Number	Status		Date	
0	Final		20 June 2018	

1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738
Phone: 02 9675 7522 Fax: 02 9675 7544
Email: office@csts.net.au Web: www.csts.net.au

Executive Summary

Compaction & Soil Testing Services Pty Ltd (CSTS) has been engaged by Mr David Hyne of Winston Langley Pty Limited on behalf of the Trustee for 45 Tennyson Avenue Unit Trust to conduct a combined Phase 1 & 2 Environmental Site Assessment at the site known as 45-47 Tennyson Avenue and 105 Eastern Road, Turramurra NSW. This assessment has been prepared in general accordance with the NSW OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*.

The proposed development is for the creation of a retail building to operate a fresh food grocer, along with two (2) additional retail premises and a nursery/café/flower store. Car-parking is to be provided on-grade within the west of the site, and within a basement car-park beneath the majority of the site. A publicly accessible orchard is to be created within the north-west of the site, and a native garden bordering the east and south of the site.

The objectives of the investigation were to:

- Determine the potential for site contamination,
- Assess whether the site is suitable, from a contamination perspective, for the proposed land use,
- > Provide conclusions and recommendations regarding the contamination status of the site.

Based on available historical information, the site was likely used for agricultural and horticultural uses until 1954, whereby Ampol Petroleum Limited established the service station within the south-west of the site. The remainder of the site likely remained used for nursery operations until 1964, when the eastern portion of the site was redeveloped. In the 1960s - 1970s, the eastern and northern portion of the site was used as a bus depot, prior to re-establishing nursery operations in the 1980s.

At the time of inspection on 08 May 2018, the site contained two (2) commercial occupants, being a retail nursery and café occupying the north and eastern portions of the site, and a service station and mechanical workshop occupying the south-western portion of the site. Three (3) USTs are currently in use within the service station site, with evidence of a fourth tank that may have been removed or decommissioned previously observed to the west of the mechanical workshop. Within the carpark of the nursery, fill points for two (2) former USTs were observed, with a third suspected UST located to the east of the entrance of the main building. No information was provided regarding the possible destruction or decommissioning of these tanks. Three (3) groundwater monitoring wells were also observed within the nursery carpark, appearing to target the suspected UST, the fill points for the former USTs and a down-gradient position near the site boundary.

Fourteen (14) soil bores were advanced throughout the site to terminal depths of between 0.2m bgl to 3.0m bgl, with a total of thirty-one (31) soil samples recovered. A total of three (3) groundwater samples were also recovered for analysis.

The laboratory analysis of the soil samples detected concentrations of Arsenic, Chromium, Copper, Lead, Nickel, Zinc, BTEX, TRH, PAH. Based on the location of samples in comparison to the proposed land-use setting (retail occupancies and publicly accessible orchard and native gardens), all of the detected concentrations were within the respective HILs for the proposed development.

Within the proposed public orchard and native garden area, one (1) sample (BH9 0.2m) recorded a TRH F3 value in excess of the respective ESL criterion. Though this value exceeded the criterion, based on the proposed development and the creation of a publicly accessible orchard at this location, minor excavations and replacement with suitable growing medium will be required. The importation of suitable growing medium is considered adequate to alleviate the potential ecological impact arising from the minor elevated concentration of TRH F3. No other ecological risks were identified within the soil samples.

Laboratory analysis of the groundwater samples detected concentrations of Arsenic, Chromium, Copper, Nickel, Zinc and PAH. The detected concentrations of Copper, Nickel and Zinc within all samples exceeded the Marine Waters criteria, whilst Nickel within MW1 and MW3 also exceeded the drinking water criteria. CSTS considers the concentrations of Copper and Zinc may be attributable to potentially leaking water supply infrastructure. The detected concentrations of Arsenic and Chromium were within the respective Marine Waters and Drinking Water criteria.

The elevated concentration of Acenaphthene (PAH) was detected in MW1 down-gradient of a suspected UST, though was not recorded in MW3, further down-gradient, indicating that the concentration was not persisting beyond the site boundary. The source of the elevated concentration is considered to likely be remnant from the suspected UST, which would be removed from site during redevelopment works for the creation of basement parking. Removal of the suspected source during the redevelopment would likely result in a decrease in the PAH concentrations.

Though elevated concentrations of Nickel were encountered throughout the site, no groundwater wells were identified within 500m of the site, limiting the potential for the wider community to access the groundwater. The receiving marine waters are also a considerable distance from the site and may result in the concentrations dissipating. Additionally, the groundwater within the surrounding area is generally not considered a source of drinking water.

It is anticipated that the existing groundwater monitoring wells are to be removed during the redevelopment of the site, further limiting access to the groundwater. A sealed basement design would also eliminate future site users from accessing the groundwater. As such, the pathway between potentially impacted groundwater and possible receptors is considered incomplete. Therefore, the condition of the groundwater is considered to not impact upon the suitability of the site for the proposed development.

Based on the conducted assessment, CSTS has concluded that the site known as 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW is of a **suitable condition**, from a contamination perspective, for the proposed land use, and does not pose an unacceptable risk to human health or the surrounding environment in accordance with the *National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013).*

CSTS recommends that, during the process of development, should any indicators of potential contamination be encountered, this office is contacted immediately for further assessment. Should there be any change in the proposed development, all conclusions and recommendations are to be reviewed. Specifically, if the proposed development will involve an alternate final land use, the findings of this report may require revision and further assessment may be necessary.

Should you have any queries about the methodology, findings, conclusions or recommendations of this assessment, please do not hesitate to contact our office on (02) 9675 7522.

		-	L ontents Summary	l
1			iction	
	1.1		ckground	
	1.2		pposed Development	
	1.3		jectives	
2			of Works	
3		•	etails	
Ŭ	3.1		e Identification	
	3.2		e Condition	
	3.2		Area A: Retail Nursery (45-47 Tennyson Avenue)	
	3.2		Area B: Service Station (105 Eastern Road)	
	3.3		ndscape Characteristics	
	3.4		gulatory Searches	
4			us Reports	
•	4.1	Ge	eo-Logix Pty Ltd (2015a), Phase 1 Environmental Site Assessment; 45 n Avenue, Turramurra NSW 2074	5-47
	4.2 Easte		o-Logix (2015b), Phase 1 Environmental Site Assessment Report; Road Turramurra, NSW 2074	
	4.3 Repo		ighton O'Brien Pty Ltd (2016 – 2018) Statistical Inventory Analysis	
5	Sit	e Hi	storystory	7
6	Co	nce	ptual Site Model	11
7	Da	ta C	Quality Objectives	. 12
	7.1	Ste	ep 1: State the Problem	. 12
	7.2	Ste	ep 2: Identify the Decision	. 12
	7.3	Ste	ep 3: Identify Inputs to the Decision	. 12
	7.4	Ste	ep 4: Define the Study Boundaries	. 12
	7.5	Ste	ep 5: Develop a Decision Rule	. 12
	7.6	Ste	ep 6: Specify Limits on Decision Errors	. 13
	7.7	Ste	ep 7: Optimise the Design	. 13
8	Sa	mpli	ing and Analysis Plan & Sampling Methodology	. 13
	8.1		mpling and Analysis Plan	
	8.1		Soil Sampling for Chemical Analysis	
	8.1	.2	Groundwater Sampling for Chemical Analysis	. 14
	8.2	Sa	mpling Methodology	
	8.2		Soil Sampling Methodology	
	8.2	2.2	Groundwater Sampling Methodology	
	8.3	Sa	mple Handling Procedures	

9	Qualit	y Assurance and Quality Control	. 15
9.	1 Fie	eld Quality Measures	. 15
	9.1.1	Standard Operating Procedures	. 15
	9.1.2	Duplicate Samples	. 15
	9.1.3	Trip Spike	. 16
	9.1.4	Trip Blank	. 17
	9.1.5	Decontamination Check	. 17
9.	2 La	boratory Quality Assessment	. 21
	9.2.1	Quality Assurance	. 21
	9.2.2	Quality Control	. 21
10	QA/0	QC Data Evaluation	. 22
11	Asse	essment Criteria	. 25
11	1.1	Soil Assessment Criteria	. 25
11	1.2	Groundwater Assessment Criteria	. 30
12	Res	ults	. 32
12	2.1	Soil Analysis – Proposed Retail Area	. 32
12	2.2	Soil Analysis – Proposed Public Orchard Area	. 32
12	2.3	Groundwater Analysis	. 33
13	Site	Characterisation	. 42
14	Con	clusions and Recommendations	. 43
15	Limi	tations	. 43
16	Refe	erences	. 44

List of Tables

Table A: Site Identification	2
Table B: Groundwater Bores Within the Site	4
Table C: Ownership History of Lot 1 DP515147	7
Table D: Ownership History of Lot 2 DP515147	7
Table E: Ownership History of Lot 1 DP4323	8
Table F: Review of Historical Aerial Imagery	8
Table G: Conceptual Site Model	11
Table H: Soil RPD Results	18
Table I: Groundwater RPD Results	19
Table J: Trip Spike Recovery	20
Table K: Trip Blank Recovery	20
Table L: Data Quality Indicators	22
Table M: HIL D Assessment Criteria	25
Table N: HIL A Assessment Criteria	28
Table O: Groundwater Assessment Criteria	30
Table P: Laboratory Analysis – Proposed Retail Area	34
Table Q: Laboratory Analysis - Public Orchard & Native Garden Area	36
Table R: Groundwater Sample Analysis (ug/L)	38

Appendix

Appendix A Site Drawings

Appendix B Site Photographs

Appendix C Borehole Logs

Appendix D Groundwater Field Sheets

Appendix E Calibration Certificates

Appendix F Supporting Documentation

Appendix G Laboratory Documentation

Abbreviations

ACM Asbestos Containing Material

AHD Australian Height Datum

ANZECC Australian and New Zealand Environment & Conservation Council

ARMCANZ Agriculture, and Resource Management Council of Australia and New

Zealand

B(a)P Benzo(a)pyrene

B(a)P TEQ Benzo(a)pyrene Toxicity Equivalent Quotient

bgl Below Ground Level

BTEXN Benzene, Toluene, Ethyl-benzene, Xylene, Naphthalene

CSTS Compaction & Soil Testing Services Pty Ltd

COC Chain of Custody

DA Development Application

DECCW Department of Climate Change & Water
DLWC Department of Land & Water Conservation

DMR Department of Mineral Resources

DP Deposit Plan

DPI Department of Primary Industries

DQI Data Quality Indicator
DQO Data Quality Objective

EIL Environmental Investigation Level
EPA Environment Protection Authority
EPL Environment Protection Licence
ESA Environmental Site Assessment
ESL Environmental Screening Level

GHSL Groundwater Health Screening Level

GIL Groundwater Investigation Level

GW Groundwater

FA/AF Friable Asbestos/Asbestos Fibres
HIL Health Based Investigation Levels

HSL Health Screening Levels

IEC International Electrotechnical CommissionISO International Organisation for Standardisation

Km Kilometre

L Litre

LEP Local Environment Plan LGA Local Government Area

LOR Limit of Reporting

m Metre

m² Square Metre

mg/kg Milligrams per Kilogram

mL Millilitre mm Millimetre

MTBE Methyl Tert-Butyl Ether

MW Monitoring Well N/A Not Applicable

NATA National Association for Testing Authorities

ND No Detection

NEPC National Environment Protection Council
NEPM National Environment Protection Measure

NL Not Limiting

NSW New South Wales

OCP Organochlorine Pesticides

OEH Office of Environment & Heritage
OPP Organophosphorus Pesticides

PAH Polycyclic Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls

PCE Tetrachloroethene

PID Photo-Ionisation Detector

POEO Act Protection of the Environment Operations Act 1997

QA Quality Assurance

QC Quality Control

RPD Relative Percentage Difference

SAQP Sampling, Analysis and Quality Plan

SOP Standard Operating Procedure

SWL Standing Water Level
TCA Trichloroacetic Acid
TCE Trichloroethylene

TRH Total Recoverable Petroleum Hydrocarbons

µg/L Microgram per Litre

UPSS Underground Petroleum Storage System

UST Underground Storage Tank
VOC Volatile Organic Compounds

1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738
Phone: 02 9675 7522 Fax: 02 9675 7544
Email: office@csts.net.au Web: www.csts.net.au

1 Introduction

1.1 Background

Compaction & Soil Testing Services Pty Ltd (CSTS) has been engaged by Mr David Hyne of Winston Langley Pty Limited on behalf of the Trustee for 45 Tennyson Avenue Unit Trust to conduct a Combined Phase 1 & 2 Environmental Site Assessment (ESA) at the site known as 45-47 Tennyson Avenue and 105 Eastern Road, Turramurra NSW (the site). This assessment has been prepared in general accordance with the NSW OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*.

1.2 Proposed Development

The proposed development is for the creation of a retail building to operate a fresh food grocer, along with two (2) additional retail premises and a nursery/café/flower store. Car-parking is to be provided on-grade within the west of the site, and within a basement car-park beneath the majority of the site. A publicly accessible orchard is to be created within the north-west of the site, and a native garden bordering the east and south of the site.

1.3 Objectives

The objectives of the investigation were to:

- > Determine the potential for site contamination,
- Assess whether the site is suitable, from a contamination perspective, for the proposed land use,
- Provide conclusions and recommendations regarding the contamination status of the site.

2 Scope of Works

In order to achieve the objectives, the following scope of works was undertaken:

- Review of available previous environmental reports, local geology and information pertaining to the site,
- Site inspection to determine the existing site condition and potential areas of environmental concern,
- ➤ Excavation of fourteen (14) boreholes for the assessment of material condition and the recovery of samples,
- Recovery and laboratory transfer of thirty-one (31) primary soil samples for contamination status assessment,
- Recovery and laboratory transfer of two (2) intra-laboratory duplicate soil samples, two (2) inter-laboratory duplicate soil samples, one (1) soil trip blank sample and one (1) soil trip spike sample for quality assurance and quality control,
- Recovery and laboratory transfer of three (3) primary groundwater samples for contamination status assessment.
- ➤ Recovery and laboratory transfer of one (1) intra-laboratory duplicate groundwater sample, one (1) inter-laboratory duplicate groundwater sample, one (1) water trip blank sample and one (1) water trip spike sample for quality assurance and quality control,

Correlation of data and compilation of this Environmental Site Assessment.

3 Site Details

3.1 Site Identification

The site identification information is provided within Table A.

Table A: Site Identification

Tubic 11. Site facilitification			
Street Address	45-47 Tennyson Avenue & 105 Eastern Road,		
	Turramurra NSW 2074		
Lot and Plan Number	Lot 1 DP4323, Lot 3 DP515147, Lot 1 DP515147		
Site Area (approx.)	5,085m ²		
Geographic Coordinates ¹	Lat: 33 ⁰ 43' 12", Long: 150 ⁰ 07' 53"		
Land Zoning	R2 – Low Density Residential		
Local Government Area	Ku-Ring-Gai Council		
Parish	Gordon		
County	Cumberland		

^{1.} Approximate Centre of Site

3.2 Site Condition

On the day of sampling (08 May 2018) the site consisted of large rectangular shaped block, bordered by Tennyson Avenue to the south, Eastern Road to the west, Alice Street to the north and residential dwellings to the east. The surrounding area is generally low-density residential, with a local shop precinct along Eastern Road to the south of Tennyson Avenue.

The site contained two (2) commercial occupants, being a retail nursery and café (Area A) occupying the north and eastern portions of the site, and a service station and mechanical workshop (Area B) occupying the south-western portion of the site.

3.2.1 Area A: Retail Nursery (45-47 Tennyson Avenue)

Within the retail nursery, the main shop is located along the western boundary, adjacent the service station building. To the north of the main shop, shade-clothed covered awnings with seating for the café exist, with plant displays and paved grounds to the west of the café seating. To the east of the café seating, the company truck parking and loading area exists, sealed with asphalt and concrete. South of the loading area, the customer car-park (of concrete construction) exists, running southerly along the eastern boundary to Tennyson Avenue. To the south of the main building, a small covered awning extends for bulk material storage, with pallet racking extending further south. Offices and supply storage buildings, and the amenities building, border the southern boundary. Gardens exist between the buildings and car-park and their respective boundaries.

Within the car-park area, a suspected underground storage tank (UST) exists to the east of the main building, and two (2) USTs are anticipated to exist to the south of the main building, to the north of the amenities building. Fill points were observed near the suspected USTs. Three (3) groundwater monitoring wells (MW) exist within the site, with MW1 located near the UST east of the main building, MW2 located adjacent the brick retaining wall within the car-park, and MW3 located in close proximity to the two (2) suspected USTs in the south of the site.

The buildings evident on the site appeared in a state of good repair, and were presented in a clean and tidy manner, though CSTS notes that the site has undergone recent refurbishment based on the occupant's website. The concrete appeared in relatively good condition, though limited cracking was observed, predominantly in the south of the site. The paving within the north-west of the site was in good condition and all plants observed within the site appeared to be in good health with no visible indicators of distress. No offensive odours were observed within the site or encountered soils.

During the extraction of groundwater for sampling, a red-brown (rust-coloured) staining was observed upon the sample tubing and during the preliminary stages of groundwater extraction. The groundwater became slightly turbid to clear during the purging process. No offensive odours were noted emanating from the encountered groundwater.

3.2.2 Area B: Service Station (105 Eastern Road)

Within the service station site, the main shop is located centrally along the eastern boundary, with a canopy extending westerly, covering four (4) fuel bowsers. To the north of the main shop, four (4) mechanical service bays exist, with another bay (likely used for emission testing) located to the rear of the main shop, connected to the other service bays. To the west of the service bays, a small patch of repaired concrete indicates prior works to decommission a UST has been undertaken. Based on discussions with the current occupants, the tank has not been used for at least two (2) decades and no indication of its prior contents was provided.

To the south of the buildings, a small shed (Vodafone Electrical and Radio Transmission hut) exists along the eastern boundary. To the north and west of this shed, a shipping container used for the storage of supplies is located, and parking for customer vehicles and trailers-for-hire is provided. Beneath this vehicle parking area, the tank farm exists, containing three (3) tanks for the storage of unleaded, premium unleaded and diesel fuels. Access driveways servicing the service station are provided from Tennyson Avenue, and two (2) from Eastern Road. The pricing display board is located to the south of the southern driveway, with an electrical transmitter tower and supply located to the south of the pricing display board. Customer vehicles for the mechanical workshop are parked around the borders of the site.

The entire surface of the site was concrete sealed, and appeared in relatively good condition, with the exception of some noticeable patch works. Based on the location of the concrete patches, they were likely associated with upgrades to the underground petroleum storage system (UPSS) infrastructure, drainage and UST abandonment. The buildings within the site appeared in good condition, with no evidence of flaking paint or damage, and no obvious signs of staining were noted in or around the service bays. Some scrap steel was observed piled along the northern boundary and near the ice-storage freezer between the second and third service bays. A small stockpile of waste tyres, estimated to be less than 50 tyres, were located between the two (2) northernmost service bays. The tyres were neatly stacked and appeared to be awaiting collection for disposal. During the walk-over of the site, no offensive odours were observed. However, during soil sampling, petroleum-like odours were observed within samples recovered to the south of the

tank farm and near the pricing display board, and minor odours were observed near the abandoned UST to the west of the service bays.

No groundwater was encountered within the service station site.

The vegetation (grass and trees) within the council land (nature strip) surrounding the site appeared in good health with no evidence of vegetative distress or die-back, indicating that the site was not impacting upon vegetative health.

3.3 Landscape Characteristics

The site has an elevation of approximately 164m – 161m AHD, sloping gently to the south. Reference to the NSW DMR (1983) *Sydney 1:100,000 Geological Series Sheet 9130* indicates that the natural geology of the site is mapped to consist of Triassic age Ashfield Shale, characterised by black to dark grey shale and laminate. Reference to the NSW DECCW (2009) *Sydney 1:100,000 Soil Landscape Series Sheet 9130* indicates that the soil landscape of the site is mapped as Glenorie Erosional landscapes comprised of shallow to moderately deep red and brown podzolic soils. Reference to the NSW DLWC (1997) *Hornsby/Mona Vale Acid Sulfate Soil Risk Map* indicates that the site is located within an area of no known occurrence.

Surface water is anticipated to flow over sealed portions of the site in a southerly direction to street drainage on Tennyson Avenue, with limited infiltration of soils in unsealed areas. Though surface water is expected to flow southerly, the closest surface water receiver is Cockle Creek, located approximately 3km north-west of the site. Groundwater is anticipated to follow the topography of the site, and flow generally southerly. Based on Geo-logix (2015a), no registered groundwater bores exist within 500m of the site. Three (3) groundwater monitoring wells exist within the site, specifically, within the eastern portion of the site (the nursery), located near disused USTs. The standing water level (SWL) within the monitoring wells range from 1.8m bgl to 3.1m bgl. Though the heights of the monitoring wells were not surveyed, comparison of the SWLs to the observed elevation difference onsite indicates that groundwater flows southerly to south-easterly, as anticipated. Refer to Table B.

No monitoring wells exist within the boundary of the service station site. A search of the NSW DPI (Office of Water) on 05 June 2018 recorded no registered groundwater monitoring wells exist within 500m of the site.

Table B: Groundwater Bores Within the Site

Well ID	Location	Date Inspected	Final Depth (m bgl)	SWL (m bgl)
MW1	East of Main Shop Entrance	08/05/2018	5.2	1.8
MW2	South-Eastern Car-Park	08/05/2018	5.6	2.6
MW3	North of Amenity Building	08/05/2018	5.3	3.1

Notes: SWL = Standing Water Level

3.4 Regulatory Searches

As of 16 April 2018, two (2) sites within Turramurra were recorded on the list of NSW contaminated sites notified to the NSW EPA. Both sites are service stations and are located approximately 1.5km south-east and 1.5km south-west of the site. These sites are both identified as regulation not being required under the CLM Act. A search of the Contaminated Land Register on 07 June 2018 did not record any notices for sites within the suburb of Turramurra.

A search of the POEO Public Register on 07 June 2018 did not record any licences, applications or notices within the suburb of Turramurra.

Refer to Appendix F.

4 Previous Reports

4.1 Geo-Logix Pty Ltd (2015a), Phase 1 Environmental Site Assessment; 45-47 Tennvson Avenue, Turramurra NSW 2074

Geo-Logix Pty Ltd conducted a site inspection on 20 February 2015. As this was a Phase 1 assessment, no intrusive investigation was conducted.

Geo-Logix Pty Ltd determined that the site was an 'L' shaped block, comprising 3,675m² and was occupied by a retail nursery and café. The main building was located at the approximate centre of the western boundary, with the café and associated seating and plant displays to the north, car-parking to the east and bulk goods display and storage to the south. Dip and fill points for two (2) USTS were observed within the southern portion of the car-park, and a third suspected UST to the east of the main shop.

The historical review indicated that the site was privately owned from the 1900s and operated as an apple orchard and possible market gardens for a part of the time until the 1950s to 1960s. The site was owned by Ampol Petroleum Pty Limited from 1954-1968 and was vacant based on the 1961 aerial image. From 1968 – 1978, the site was owned by RND Holdings Pty Limited and operated as a bus depot. From 1978 to 2002, the site was operated as a nursery and landscaping supply shop, after which a café was added and operated as a nursery and café.

A review of Council records indicated that a DA application on 04 November 1977 *DA#77/112) was submitted to change the site from a bus depot into a garden centre. One of the recommendations of the Council was that the existing fuel tanks be removed or filled to the satisfaction of Council. No destruction certificates or evidence of this being conducted, or any information pertaining to the size, content and type of USTs present was provided.

Anecdotal evidence suggests that OPPs (Malathion, Omethoate and Dimethoate) were historically used on the site, though a previous investigation conducted in 1996 did not identify OPPs within the soil. However, it is noted that the assessment was limited to two (2) samples.

Based on the historical review, Geo-Logix Pty Limited determined that the following potentially contaminating activities have occurred onsite;

- Operation of orchards, market gardens and retail nursery,
- Operation of a bus depot, with associated mechanical activities and USTs,
- Demolition of former site structures.

Geo-Logix Pty Limited concluded that there is potential for contamination to occur on the site and requires further investigation.

4.2 Geo-Logix (2015b), Phase 1 Environmental Site Assessment Report; 105 Eastern Road Turramurra, NSW 2074

Geo-Logix Pty Ltd conducted a site inspection on 03 July 2015. As this was a Phase 1 assessment, no intrusive investigation was conducted.

Geo-Logix Pty Ltd determined the site to be approximately 1,410m² and rectangular in shape. The main building comprising the shop and the mechanical workshop is located within the north-eastern portion of the site, with the canopy extending westerly from the shop over the four (4) existing fuel bowsers. A possible UST abandonment or removal to the north-west of the shop, adjacent the mechanic service bay was evident, based on patched concrete work. To the south-east of the canopy, fill and dip points indicate the location of the tank farm, with three (3) to five (5) USTs suspected of being within the tank farm. No groundwater monitoring wells were recorded onsite. A shipping container for the storage of parts and supplies, and hire trailers were also stored along the southern boundary.

Based on the available historical information, Geo-Logix Pty Ltd considered that the site remained as vacant undeveloped land until the mid-1950s when it was developed into the service station. Since then, the site has remained operational as a service station.

Based on the historical and ongoing use of the site as a service station, Geo-Logix Pty Ltd considered there is potential for soil and groundwater contamination to exist within the site. Therefore, further investigation of the site for contamination was recommended.

4.3 Leighton O'Brien Pty Ltd (2016 - 2018) Statistical Inventory Analysis Site Reports

CSTS has reviewed the site reports produced by Leighton O'Brien Pty Ltd regarding the storage of fuel at 105 Eastern Road, Turramurra NSW. The provided information pertained to September 2016 through March 2018. The information was collated daily and statistically analysed monthly.

Four (4) site reports were reviewed, containing summaries for six (6) month periods. The reports found that overall the results that were obtained were satisfactory. Minor discrepancies were noted throughout the period, though were generally corrected for analysis and attributed to the dip reading rather than a sudden loss or gain of product. During the nineteen (19) months of monitoring, only two (2) incidents were recorded where a monthly result was less than satisfactory. Tank 2 (Premium Unleaded) recorded a 'fail' result in March 2017 whilst Tank 1 (Unleaded) recorded a 'flag' result in December 2017.

CSTS reviewed the specific tank reports for the incidents, which identified that during March 2017, an unacceptable trend of loss from Tank 2 was identified, with Leighton

O'Brien Pty Ltd recommending investigation. The cause appears to have been addressed, with the trend being corrected during the following months. The incident flagged in December 2017 arose from notable increases in the losses compared to the previous month. This was attributed to inaccurate dip readings, and recommended greater care to be taken to eliminate poor data. This trend appears to have been addressed in the following months.

5 Site History

Tables C-E contains a summary of the ownership history of the site, adopted from Geo-Logix Pty Ltd (2015a) and Geo-logix Pty Ltd (2015b). Table F contains a summary of information gathered from the historical aerial photographs of the site within the Geo-Logix Pty Ltd (2015a) and Geo-logix Pty Ltd (2015b), as interpreted by CSTS.

In summary, the site was likely used for agricultural and horticultural uses until 1954, whereby Ampol Petroleum Limited established the service station within the southwest of the site. The remainder of the site likely remained used for nursery operations until 1964, when the eastern portion of the site was redeveloped. In the 1960s - 1970s, the eastern and northern portion of the site was used as a bus depot, prior to re-establishing nursery operations in the 1980s.

Table C: Ownership History of Lot 1 DP515147

Date	Owner & Occupation		
Lot 1 DP515147			
1997 – to date	GDR Automotive Services Pty Limited		
1991 – 1997	Antoon Gerrit Vanderbent, Technician		
1982 – 1991	Ampol Limited		
1966 – 1982	Ampol Petroleum Limited		
Lot 2 & Part Lot 3 [Lot 2 & Part Lot 3 DP4323 Area: 1 Roods 37 3/4 perches (1,967m ² Approx.)		
1954 – 1966	Ampol Petroleum Limited		
1941 – 1954	Violet Helen May Binder, Widow		
1907 – 1941	Herbert Binder, Labourer		

Adapted from Geo-Logix Pty Ltd (2015b)

Table D: Ownership History of Lot 2 DP515147

Date	Owner & Occupation	
Lot 2 DP515147		
2002 – to date	Parkers Nursery Pty Ltd (formerly Turramurra Produce and Sand Pty Ltd)	
1988 – 2002	Turramurra Produce and Sand Pty Ltd	
Lot 2 DP515147 A	rea: 1 Roods 37 ¾ perches (1,967m² Approx.)	
1985 – 1988	Turramurra Produce and Sand Pty Ltd	
1978 – 1985	Herana Pty Limited	
1968 – 1978	RND Holdings Pty Limited	
1966 – 1968	Ampol Petroleum Limited	
Part Lots 2 & 3 DP4323 Area: 1 Roods 37 ¾ perches (1,967m ² Approx.)		
1954 – 1966	Ampol Petroleum Limited	
1941 – 1954	Violet Helen May Binder, Widow	
1907 – 1941	Herbert Binder, Labourer	

Adapted from Geo-Logix Pty Ltd (2015a)

Table E: Ownership History of Lot 1 DP4323

Date	Owner & Occupation	
Lot 1 DP4323		
2002 – to date	Parkers Nursery Pty Ltd (formerly Turramurra Produce and Sand Pty Ltd)	
1985 – 2002	Turramurra Produce and Sand Pty Ltd	
1978 – 1985	Herana Pty Limited	
1968 – 1978	RND Holdings Pty Limited	
1964 – 1668	Frederick Percy Jennings, Motor Mechanic Ralph William Jennings, Master Butcher	
1922 – 1964	John Jennings, Gardener	
Lot 1 DP4323 Area: 1 Roods 27 3/4 perches (1,714m2 Approx.)		
1922 – 1922	John Jennings, Gardener	
1908 – 1922	George Wilkinson Kershaw, Nurseryman	

Adapted from Geo-Logix Pty Ltd (2015a)

Table F: Review of Historical Aerial Imagery

Date	Site	Surrounding Land
1930	The resolution of the image is unclear. The site appears to contain a residential dwelling (at the approximate location of the current nursery building) and is surrounded by vegetation (possible nursery or market-garden operations).	Tennyson Avenue, Eastern Road and Alice Street are visible and form the southern, western and northern boundaries respectively. At least two structures, assumed to be residential dwellings, form the eastern boundary. Residential development appears to be underway to the east and south of the site, whilst orchards are visible to the west of Eastern Road. The land north of Alice Street appears to be small farm lots. Further west, more evidence of urban development in the form of residential housing is evident.
1951	The resolution of the image is clearer than 1930. The site appears to have established gardens surrounding the house, with market-garden or orchards. The current service station area appears to be heavily vegetated.	The sites to the east, south and west appear to be similar to 1930 imagery. Further residential development is visible to the north of Alice Street, with increased vegetation noted to the north-east of the site.
1961	The site appears to be undergoing redevelopment. The previous residential structure has been removed and the immediate surrounding ground to the east and north appears disturbed. The land within the south-west of the site has been developed into the service station.	Residential development within the surrounding area has intensified. Previously vacant agricultural land to the east and south of the site has been redeveloped into detached housing and what appears to be a row of local shops respectively. The orchard to the west of Eastern Road is in the process of subdivision, with two (2) new roads with cul-de-sac ends having been formed. The land to the north of Alice Street has

Dete	0:1	O manage l'anni lanci
Date	Site	Surrounding Land
		also been subdivided and redeveloped
	This image is promod in further	into smaller lots of detached dwellings.
1970	This image is zoomed in further than 1961. The service station appears relatively unchanged since 1962. Within the east of the site, a building has been created near the location of the former residential dwelling, with multiple buses parked to the east and south of the new structure. The northern portion of the site (including north of the service station) appears to be heavily vegetated, with two (2) small structures near the boundary with the service station.	The subdivisions to the west of Eastern Road and north of Alice Street appear to be completed, with detached residential dwellings evident. The areas to the east and south of the site appear relatively unchanged.
	The service station portion of the site appears relatively unchanged since 1970.	To the position of the least above a page
1982	The previous office structure for the bus depot remains, though an addition to the east of the structure appears evident, and a small structure along the southern boundary has been created. The buses have been removed and what appears to be greenhouses / nursery operations appear to have commenced within the northern (previously vegetated) area of the site.	To the south of the local shops, a carpark has been created to further service the shopping mall. The local surrounds appear relatively unchanged, consisting of detached residential dwellings. Multiple properties in the surrounding area have added swimming pools in the rear yards. The surrounds otherwise appear relatively unchanged since 1970.
1991	The service station site appears relatively unchanged since 1982. Within the nursery area, a small structure (awning) has been added to the south of the main building. The structure within the northern portion appears to have a new roof. The site appears otherwise relatively unchanged.	The surrounding area appears relatively unchanged since 1982.
1998	The service station site appears relatively unchanged since 1991. Multiple cars are stored within the south-eastern corner of the site. The nursery appears relatively unchanged since 1991. The growing area within the north-	The surrounding area appears relatively unchanged since 1991.

Date	Site	Surrounding Land
	western corner of the site has been reconfigured with pathways and rows of plants.	
2005	The main building of the service station has been added to, with another mechanic bay added to the rear (east) of the building. Within the nursery area, the structure within the northern portion appears to be covered with shadecloth. Numerous products for sale are observed to the south of the main building. The large trees bordering the south-east have grown considerably since 1991. The site otherwise appears relatively unchanged.	Minor residential redevelopments (knock-down/rebuild) have been undertaken in the wider surrounding area. The property adjacent the eastern boundary has been developed as a townhouse complex. The surrounding area otherwise appears relatively unchanged since 1998.
2014	The site appears relatively unchanged since 2005. The vegetation bordering the site has become notably thicker.	Additional townhouses have been created to the south-east of the site, on the southern side of Tennyson Avenue. The surrounding area appears relatively unchanged since 2005.
2018	Solar panels have been added to the shop building and workshops within the service station site. The site appears otherwise relatively unchanged since 2014.	The surrounding area appears relatively unchanged since 2014.

Adapted from Geo-Logix Pty Ltd (2015a), Geo-Logix Pty Ltd (2015b) and Nearmap (2018)

6 Conceptual Site Model
The conceptual site model containing the potential contaminants of concern, likely sources, potential pathways and receptors is presented in Table G.

Table G: Conceptual Site Mo		Detential Dethyrous	Decentors
Contaminant of Concern Heavy Metals	 Potential Sources Operation of service station and mechanics workshop Leaching from older building constructions Leaks from Leaded fuel storage Demolition practices of older structures 	 Potential Pathways Dermal Contact Ingestion Plant Uptake Groundwater Infiltration 	ReceptorsCurrent site usersFuture site usersConstruction workers
BTEXN	 Maintenance of buses Operation of service station and mechanics workshop Storage of fuels 	Dermal ContactIngestionGroundwater Infiltration	Current site usersFuture site usersConstruction workers
VOCs	 Maintenance of buses Operation of service station and mechanics workshop Storage of fuels and waste oils 	Groundwater infiltrationVapour intrusion	Current site usersFuture site usersConstruction workers
MTBE	 Maintenance of buses Operation of service station and mechanics workshop Storage of fuels and waste oils 	Groundwater infiltration	Current site usersFuture site usersConstruction workers
TRH	 Spills & leaks from stored fuels & vehicles Vehicle deposition Vehicle maintenance 	Vapour intrusionGroundwater InfiltrationIngestionDermal contact	Current site usersFuture site usersConstruction workers
PAH	 Spills & leaks from stored fuels & vehicles Vehicle deposition Vehicle maintenance 	 Dermal Contact Ingestion Plant Uptake Groundwater Infiltration 	Current site usersFuture site usersConstruction workers
Synthetic Pyrethroids	 Historic market garden & orchard operations Nursery operations 	Dermal ContactIngestionPlant Uptake	Current site usersFuture site usersConstruction workers
Carbamates	Historic market garden & orchard operationsNursery operations	Dermal ContactIngestionPlant Uptake	Current site usersFuture site usersConstruction workers
Pesticides (OCPs / OPPs)	 Historic market garden & orchard operations Nursery operations 	Dermal ContactIngestionPlant Uptake	Current site usersFuture site usersConstruction workers
РСВ	Leaks from hydraulic fluids or solventsElectrical equipment/transformers	Dermal ContactIngestionGroundwater infiltration	Current site usersFuture site usersConstruction workers
Phenols	 Maintenance of buses Operation of service station and mechanics workshop Storage of fuels and waste oils 	Dermal ContactIngestionGroundwater infiltration	Current site usersFuture site usersConstruction workers
Asbestos	Poor historical demolition practices	Airborne migration of fibres	 Current site users Future site users Construction workers Neighbouring community

7 Data Quality Objectives

The Data Quality Objective (DQO) process was applied to the investigation to ensure that all data collection activities were appropriate and achieved the project objectives. The DQO process consists of seven (7) steps, outlined below, which define the type, quality, and quantity of data needed to support decisions relating to the environmental condition of a site.

7.1 Step 1: State the Problem

The site has a number of potential sources of contamination, as outlined within Section 6. The 'problem' as it stands, is that the site may contain contamination which has the potential to affect the suitability of the property for the proposed retail use with publicly accessible orchards and native gardens. The purpose of this investigation is to determine the condition of the site and to provide recommendations where necessary.

7.2 Step 2: Identify the Decision

Data is required in order to determine the condition of the site. It will be necessary to decide: 'Is the site suitable for the proposed retail use with publicly accessible orchards and native gardens?' To allow for the decision to be made, it will be necessary to consider the following questions:

- What are the potential sources of contamination at the site?
- Does the material within the site contain contaminants?
- Where contaminants are present, do the concentrations have the potential to adversely impact on human health or the environment?
- What, if any, remediation action is required?

7.3 Step 3: Identify Inputs to the Decision

In order to inform the decision, the following aspects are to be considered;

- > Visual and olfactory observations of the site condition during the assessment,
- Results of soil samples recovered from the fourteen (14) soil bores,
- Results of groundwater samples recovered from three (3) existing groundwater monitoring wells,
- ➤ The proposed varied uses of the site and the results of the soil and groundwater samples in regard to their locality.

7.4 Step 4: Define the Study Boundaries

The boundaries of the study area are the site boundaries (Appendix A). The vertical extent of the assessment is the depth of the proposed bulk excavation, ranging from approximately 2.2m bgl (towards the south) and approximately 5.5m bgl (towards the north). The assessment of groundwater is limited to the encountered groundwater to a depth of approximately 5.6m bgl. The study is temporally limited to the day of sampling, that is, 08 May 2018.

7.5 Step 5: Develop a Decision Rule

The assessment includes a comparison of individual soil sample results to the Residential A and the Commercial / Industrial D Health Investigation Levels (HILs, whilst the individual groundwater sample results are compared to the Groundwater Investigation Levels (GILs). These thresholds are detailed within Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater of the National

Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013), published by the National Environment Protection Council.

The assessment criteria are outlined and justified in Section 11.

7.6 Step 6: Specify Limits on Decision Errors

Two types of decision errors may occur due to uncertainties or limitations in the project data set:

- > A site is deemed uncontaminated when, in fact, it is contaminated,
- ➤ A site is deemed contaminated when, in fact, it is uncontaminated.

The consequences for incorrectly assessing a site as posing an unacceptable risk are considered less significant than the consequences for incorrectly assessing a site as posing acceptable risk.

Factors that may contribute to one of the above decision errors include:

- Sampling error the sampling program does not adequately detect the variability of a contaminant from point to point across the site. That is, the samples collected are not representative of the site conditions,
- ➤ Measurement error may occur through the sample collection, handling, preparation, analysis, and data reduction processes.

To minimise the potential for decision errors to occur, Data Quality Indicators (DQIs) have been determined as discussed in Section 10, covering; Completeness, Comparability, Representativeness, Precision and Accuracy. Compliance with the DQIs is considered to provide a sufficient level of confidence to minimise the potential for decision errors.

7.7 Step 7: Optimise the Design

In order to optimise the design, a sampling plan was implemented as outlined within Section 8.1. Quality assurance and quality control procedures were implemented as outlined within Sections 9.1 and 9.2.

8 Sampling and Analysis Plan & Sampling Methodology

8.1 Sampling and Analysis Plan

8.1.1 Soil Sampling for Chemical Analysis

The site covers an area of approximately 5,120m², thereby requiring fourteen (14) sampling locations in accordance with the NSW EPA (1995) *Contaminated Sites;* Sampling Design Guidelines. Depth sampling followed a targeted approach to assess the various soil profiles and suspected impacted areas. A minimum of one (1) soil profile was assessed at each location.

A total of fourteen (14) primary soil samples were recovered for laboratory analysis. The recovered samples were analysed for range of contaminants including;

- ➤ 8 Priority Metals (Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc),
- > BTEXN (Benzene, Toluene, Ethyl-benzene, Xylene, Naphthalene),
- > TRH (Total Recoverable Petroleum Hydrocarbons),
- VOCs (Volatile Organic Compounds),

- > PAHs (Polycyclic Aromatic Hydrocarbons),
- OCP/OPP (Organochlorine and Organophosphorus Pesticides),
- PCBs (Polychlorinated Biphenyls),
- Phenols.
- > Synthetic Pyrethroids,
- Carbamates,
- Asbestos fibres.

8.1.2 Groundwater Sampling for Chemical Analysis

Three (3) groundwater monitoring wells exist within the site installed by others. The groundwater monitoring wells are located within the nursery area of the site, and appear to target locations of disused USTs, and potential offsite migration. CSTS does not know the specifics of the wells regarding the date of installation, the construction, installation or development process that was implemented. The groundwater monitoring wells were reviewed and deemed to be of a serviceable condition.

A total of three (3) samples were recovered from the wells and analysed for concentrations of 8 priority metals, BTEX, VOCs, TRH, PAH, Phenols and PCBs.

8.2 Sampling Methodology

8.2.1 Soil Sampling Methodology

Soil samples were recovered directly from the material held within the auger, taking care to ensure that the sampled material had not been in direct contact with the auger head. To ensure the material sampled was representative of the depth of recovery, a thin outer-layer of material was discarded prior to sampling.

Fresh disposable nitrile gloves were used to recover each individual sample and transfer a portion of the material into a laboratory supplied 250mL glass sample jar with Teflon seal lid. A replicate sample (approximately 500mL) was recovered for analysis of Asbestos fibres and placed within a snap-lock bag. This sample was also screened with a Photo-Ionisation Detection (PID) Meter for the potential presence of volatile compounds.

8.2.2 Groundwater Sampling Methodology

To detect whether any free-phase petroleum hydrocarbons were present within the groundwater, an interface meter was used. No free-phase petroleum hydrocarbons were detected within the groundwater monitoring wells.

Groundwater sampling was conducted using a Sample-Pro low-flow micro-purge pump. The pump was lowered into the monitoring well and activated at a flow rate of approximately 0.3L/min. The extracted groundwater was monitored for consistency in stabilisation parameters to indicate the encountering of formation water rather than stagnant bore water. Each monitoring well was purged for not less than 25 minutes until the stabilisation parameters were met. Refer to Appendix D. Calibrated groundwater monitoring equipment was utilised. The calibration certificates are located within Appendix E.

After adequate purging, the sampling tube was placed to transfer sample water to appropriately prepared sample containers supplied by the analytical laboratory. For each sample, the following containers were filled;

- ➤ 1 x 500ml Amber glass bottle with Teflon-lined lid,
- ➤ 1 x 125ml Opaque plastic bottle preserved with Nitric acid,
- ➤ 1 x 25ml Opaque plastic bottle preserved with Sulphuric acid,
- 2 x 40ml glass vials preserved with Hydrochloric acid.

New sample tubing and a new dedicated bladder were used for the purging and sampling of each groundwater monitoring well. The pump casing was decontaminated by washing in a 3% solution of phosphate free detergent (Decon 90) and rinsing with de-ionised water prior to assessing each monitoring well.

Due to technical difficulties onsite, the low-flow micro-purge pump system was not able to adequately sample MW2. A new dedicated bailer was lowered within the well to recover sufficient water volume for analysis.

8.3 Sample Handling Procedures

Once the samples had been recovered, they were labelled with the project code and a unique sample ID. The samples for chemical analysis were placed within chilled transport containers to begin the cool down process required prior to chemical analysis. The primary samples, intra-laboratory duplicate samples, trip spike and trip blank samples were transported under chain of custody procedures to Envirolab Services Pty Ltd, whilst the inter-laboratory duplicate samples were transported to SGS Australia Pty Ltd.

Upon receipt of the samples, a technician from the laboratories checked the condition of the samples to confirm the integrity of the sample container seals and that the samples were received in an appropriate condition.

9 Quality Assurance and Quality Control

9.1 Field Quality Measures

9.1.1 Standard Operating Procedures

Site works were conducted by an experienced Environmental Consultant on 08 May 2018 in accordance with the CSTS (2014) *Field Manual on Standard Operating Procedures for Environmental Sampling and Monitoring.* This includes but is not limited to; the methods of sampling, decontamination of sampling equipment, sample preparation and storage, the documentation of site conditions, and the completion of chain of custody documentation.

9.1.2 **Duplicate Samples**

Duplicate samples were recovered to analyse the precision and reproducibility of the conducted analysis. The duplicate samples were labelled with an identification number not known to the laboratory, and analysed in the same way as the primary samples. Duplicate samples are analysed by calculating the relative percentage difference (RPD) of the laboratory results for the duplicate and corresponding primary sample. The RPD is a method of normalising two values and allows a comparison between values. For this project, an RPD of 30% was considered acceptable. In cases where one (1) or both of the concentrations were less than 5

times the laboratory Limit of Reporting (LOR), an RPD of 100% was considered acceptable.

9.1.2.1 Soil RPD Results

Upon analysis, the following RPDs were in excess of the acceptance criteria:

- Zinc in BH1 0.5m and B1,
- > Zinc in BH1 0.5m and S1,
- Chromium in BH10 0.5m and S2,
- > Zinc in BH10 0.5m and S2.

Refer to Table H.

In regard to the RPD exceedances, variation between primary and duplicate samples are expected as the duplicate samples were discrete samples rather than split samples from a larger primary sample. As a conservative measure, the higher concentration was adopted as the guiding value in order to minimise the potential to underestimate the level of contamination present.

9.1.2.2 Groundwater RPD Results

Upon analysis, the following RPDs were in excess of the acceptance criteria:

- Arsenic in MW1 and S1.
- Chromium in MW1 and S1,
- Copper in MW1 and S1.

Refer to Table I.

In regard to the RPD exceedances, the concentrations detected were generally low, exacerbating the variation between samples. As a conservative measure, the higher concentration was adopted as the guiding value in order to minimise the potential to underestimate the level of contamination present.

9.1.3 Trip Spike

The trip spike sample assesses the loss of volatile compounds through field handling and transport procedures. The trip spike is a clean sand or water sample spiked with a known concentration of BTEX by the analytical laboratory. The sample is transported to and from the site with the primary samples, and is analysed to determine the percentage of BTEX recovered.

Upon analysis, the recovery rates for the soil trip spike were between 96% and 98% of the known concentration. The recovery rates for the water trip spike were between 75% and 90% of the known concentration. Therefore, the field and transport procedures were considered satisfactory for minimising the potential loss of volatile compounds from the primary samples.

Refer to Table J.

9.1.4 Trip Blank

The trip blank sample assesses the potential for the primary sample to be affected by external and environmental factors during transport between the site and laboratory. The trip blank sample consists of blank sand or water which is transported to and from the site and laboratory with the primary samples.

Upon analysis of the soil and water trip blank samples, no concentrations of BTEX were detected. As such, there is a minimal potential for cross-contamination to have occurred during the field and trip handling procedures. Refer to Table K.

9.1.5 Decontamination Check

The purpose of the rinsate sample is to provide data relating to the effectiveness of the decontamination process. The sample consists of laboratory supplied de-ionised water which is poured over a piece of sample equipment after decontamination and recovered for analysis.

No decontamination check samples were recovered or analysed. The use of dedicated sampling equipment and compliance with standard operating procedures were deemed sufficient for minimising the potential for cross-contamination to occur.

Table H: Soil RPD Results

Anglyta	L OP ¹	LOR ²	Concentration	ons (mg/kg)	DDD /0/\	Concentrati	ons (mg/kg)	DDD (0/)	Concentration	ons (mg/kg)	DDD (0/)	Concentratio	ns (mg/kg)	DDD (0/)
Analyte	LOR ¹	LOR	BH1 0.5m	B1	RPD (%)	BH1 0.5m	S1	RPD (%)	BH10 0.5m	B2	RPD (%)	BH10 0.5m	S2	RPD (%)
Arsenic	4	3	5	5	0	5	7	33	11	11	0	11	8	32
Cadmium	0.4	0.3	<0.4	<0.4	-	<0.4	<0.3	-	<0.4	<0.4	-	<0.4	<0.3	-
Chromium	1	0.3	19	20	5	19	18	5	27	24	12	27	15	57
Copper	1	0.5	6	6	0	6	6.5	8	2	3	40	2	2.8	33
Lead	1	1	20	16	22	20	15	29	15	15	0	15	13	14
Mercury	0.1	0.05	<0.1	<0.1	-	<0.1	< 0.05	-	<0.1	<0.1	-	<0.1	< 0.05	-
Nickel	1	0.5	6	5	18	6	2.3	89	4	3	29	4	1.6	86
Zinc	1	0.5	21	14	40	21	15	33	7	7	0	7	12	53
Total PAH	0.05	0.8	< 0.05	< 0.05	-	< 0.05	<0.8	-	< 0.05	< 0.05	-	<0.05	<0.8	-
B(a)P TEQ	0.5	0.3	<0.5	<0.5	-	<0.5	< 0.3	-	<0.5	< 0.5	-	< 0.5	<0.3	-
B(a)P	0.05	0.1	< 0.05	< 0.05	-	< 0.05	<0.1	-	<0.05	< 0.05	-	<0.05	<0.1	-
Benzene	0.2	0.1	<0.2	<0.2	-	<0.2	<0.1	-	<0.2	<0.2	-	<0.2	<0.1	-
Toluene	0.5	0.1	<0.5	<0.5	-	<0.5	<0.1	-	<0.5	<0.5	-	<0.5	<0.1	-
Ethyl-	1	0.1	<1	<1	_	<1	<0.1	_	<1	<1	_	<1	<0.1	_
benzene	· · · · · · · · · · · · · · · · · · ·		` '	<u> </u>	-	` '			`'	\ 1		`'		-
Xylene	11	0.3	<1	<1	-	<1	<0.3	-	<1	<1	-	<1	<0.3	-
Naphthalene	11	0.1	<1	<1	-	<1	<0.1	-	<1	<1	-	<1	0.2	-
TRH F1	25	25	<25	<25	-	<25	<25	<u>-</u>	<25	<25	-	<25	<25	-
TRH F2	50	25	<50	<50	-	<50	<25	-	<50	<50	-	<50	<25	-
TRH F3	100	90	<100	<100	-	<100	<90	-	<100	<100	-	<100	<90	-
TRH F4	100	120	<100	<100	-	<100	<120	-	<100	<100	-	<100	<120	-

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191179 & SGS Australia Pty Ltd Analytical Report SE178970

Laboratory Limit of Reporting for Primary and 'B' samples
 Laboratory Limit of Reporting for 'S' samples

Table I: Groundwater RPD Results

Analyta	LOD1	LOR ²	Concentrations		DDD (0/)	Concen	DDD (0/)	
Analyte	LOR ¹	LOR	MW1	B1	RPD (%)	MW1	S 1	RPD (%)
Arsenic	1	1	1	1	0	1	5	133
Cadmium	0.1	0.1	<0.1	<0.1	-	<0.1	<0.1	-
Chromium	1	1	<1	<1	-	<1	2	120
Copper	1	1	1	1	0	1	5	133
Lead	1	1	<1	<1	-	<1	1	67
Mercury	0.05	0.1	<0.05	< 0.05	0	< 0.05	<0.1	-
Nickel	1	1	22	21	5	22	24	9
Zinc	1	5	45	43	5	45	48	6
Total PAH	1	1	1.5	2.0	29	1.5	2	29
B(a)P	1	0.1	<1	<1	-	<1	<0.1	-
Benzene	1	0.5	<1	<1	-	<1	<0.5	-
Toluene	1	0.5	<1	<1	-	<1	<0.5	-
Ethyl-benzene	1	0.5	<1	<1	-	<1	<0.5	-
Xylene	3	1.5	<3	<3	-	<3	<1.5	-
Naphthalene	1	0.5	<1	<1	-	<1	<0.5	-
TRH C ₆ -C ₉	10	40	<10	<10	-	<10	<40	-
TRH C ₁₀ -C ₁₄	50	50	<50	<50	-	<50	<50	-
TRH C ₁₅ -C ₂₈	100	200	<100	<100	-	<100	<200	-
TRH C ₂₉ -C ₃₆	100	200	<100	<100	-	<100	<200	-
TRH C ₁₀ -C ₃₆	250	450	<250	<250	-	<250	<450	-
TRH F1	10	50	<10	<10	-	<10	<50	-
TRH F2	50	60	<50	<50	-	<50	<60	-
TRH F3	100	500	<100	<100	-	<100	<500	-
TRH F4	100	500	<100	<100	-	<100	<500	-

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191419 & SGS Australia Pty Ltd Analytical Report SE178971

Laboratory Limit of Reporting for Primary and 'B' samples
 Laboratory Limit of Reporting for 'S' samples

Table J: Trip Spike Recovery

Sample	Benzene	Toluene	Ethyl-benzene	o-Xylene	m+p Xylene
Trip Spike (Soil)	98%	98%	96%	96%	96%
Trip Spike (Water)	75%	82%	85%	90%	88%
Assessment Criteria	70 – 130	70 – 130	70 – 130	70 – 130	70 – 130

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191179 & 191419

Table K: Trip Blank Recovery

Sample ID	Unit of Measure	Benzene	Toluene	Ethyl-Benzene	o-Xylene	m+p Xylene	
Trip Blank (Soil)	mg/kg	<0.2	<0.5	<1	<1	<2	
Trip Blank (Water)	μg/L	<1	<1	<1	<1	<2	
Acceptable Range		No Detection Above Laboratory Limit of Reporting					

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191179 & 191419

9.2 Laboratory Quality Assessment

9.2.1 Quality Assurance

Envirolab Services Pty Ltd and SGS Australia Pty Ltd are accredited by NATA (NATA accreditation numbers 2901 and 2562) for chemical testing services. SGS Australia Pty Ltd and Envirolab Services Pty Ltd have quality systems compliant to ISO/IEC 17025 and work to documented procedures in accordance with this standard. This includes but is not limited to; participation in proficiency testing, use of certified reference materials and statistical analysis of quality control data.

9.2.2 Quality Control

Quality control samples are included in the laboratories' testing schedules at or above frequencies stipulated within the *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (Amended 2013) and in accordance with their NATA accreditation. These include the use of calibration standards, calibration verification standards, method blanks, matrix spikes and duplicates, laboratory control samples, surrogates and internal standards.

CSTS has reviewed the QA/QC performance of Envirolab Services Pty Ltd and SGS Australia Pty Ltd in relation to chemical analysis. CSTS has compared the results of the QA/QC performance to the laboratory acceptance criteria specific to the analyte and QC measure.

Upon review of Envirolab Services Pty Ltd QA/QC data relating to soil samples, the following failures were identified;

- Laboratory duplicate Mercury,
- ➤ Laboratory duplicate Copper,
- Laboratory duplicate Nickel.

An explanation for the potential cause of the RPD failures was not provided by Envirolab Services Pty Ltd. CSTS notes that 'triplicate' sample results were provided in the analytical data for the corresponding samples. To minimise the potential for error, CSTS has adopted the higher concentration of the primary and triplicate sample pairing.

All QA/QC measures were compliant within the analysis of water samples by Envirolab Services Pty Ltd.

Upon review of SGS Australia Pty Ltd Statement of QA/QC performance relating to soil samples, the following failures were identified;

- Laboratory Duplicate Cadmium,
- Matrix Spike Recovery Mercury,
- Matrix Spike Recovery Chromium,
- Matrix Spike Recovery Copper,
- Matrix Spike Recovery Nickel,
- ➤ Matrix Spike Recovery Lead,
- Matrix Spike Recovery Zinc.

In regard to the laboratory duplicate RPD failure of Cadmium and matrix spike recovery failures of Nickel, Lead and Zinc, these exceedances were attributed to sample heterogeneity. The failure of the Matrix Spike recovery – Mercury, Chromium and Copper, were a consequence of matrix interference.

Upon further review of the QA/QC results, the failures were attributable to samples from unrelated projects included within the batch for analysis.

Upon review of SGS Australia Pty Ltd Statement of QA/QC performance relating to groundwater samples, all DQO objectives were met.

CSTS considers the data is reliable and useable for the purpose of this assessment.

10 QA/QC Data Evaluation

Data Quality Indicators (DQI) are used to document and quantify compliance, or otherwise with the requirements of the Data Quality Objectives (DQO). They are used to assess the reliability of the field procedures and analytical results. The DQIs are Completeness, Comparability, Representativeness, Precision, and Accuracy. Evaluation of the DQIs is documented in Table L.

Table L: Data Quality Indicators

DQI		Consideration	Compliance
		All critical locations sampled	A total of thirty-one (31) soil samples were collected from fourteen (14) boreholes excavated within the site. A total of three (3) groundwater samples were recovered from three (3) existing monitoring wells within the nursery area.
		All samples collected (from grid and at depth)	All samples were collected in accordance with the sampling plan
Completeness ¹	Field	SOPs appropriate and complied with	All samples were collected in accordance with relevant guidelines, industry practices, and Australian Standards
ample		Experienced sampler	Samples were recovered by suitably qualified and experienced samplers
ŏ		Documentation correct	All required documentation was completed including written site records and photographic logs
	Laboratory	All critical samples analysed according to SAQP	All of the recovered samples were analysed by NATA accredited laboratories
		All analytes analysed according to SAQP	Each recovered sample was analysed for the analytes required by the SAQPs in accordance with the context for which the sample was recovered

DQI		Consideration Appropriate methods and LORs	Compliance Envirolab Services and SGS Australia Pty Ltd are suitably qualified NATA accredited laboratories, therefore the appropriate methods and LORs were adopted for the testing, as outlined within the analytical reports
		Sample documentation complete	Appropriate chain of custody documentation was completed. Sample receipts were provided detailing the condition of the samples upon receipt
		Sample holding times complied with	All samples were analysed within the appropriate holding times as detailed in NEPM 2013
		Same SOPs used on each occasion	Each sample was recovered in accordance with the SOPs
		Experienced sampler	Samples were recovered by suitably qualified and experienced sampler
	Field	Climatic conditions	The samples were collected over a period of less than nine (9) hours, therefore the climatic conditions are deemed to have a negligible impact on the comparability of the samples.
		Same types of samples collected	The type of samples collected was consistent
Comparability ²	Laboratory	Sample analytical methods used	Envirolab Services and SGS Australia Pty Ltd are suitably qualified NATA accredited laboratories, therefore the appropriate methods were adopted for the testing, as outlined within the analytical reports
Com		Sample LORs	Envirolab Services and SGS Australia Pty Ltd are suitably qualified NATA accredited laboratories, therefore the appropriate LORs were adopted for the testing, as outlined within the analytical reports
		Same laboratories	Envirolab Services Pty Ltd conducted the analysis of all of the primary samples as well as the intralaboratory duplicate samples. SGS Australia Pty Ltd conducted the analysis of the inter-laboratory duplicate samples
		Same units	The same units were used for the respective analytes
esent ative	Field	Appropriate media sampled according to SAQP	All samples were recovered in accordance with the SAQP

DQI		Consideration	Compliance
		All media identified in SAQP	The investigation was limited to the analysis of the soil and groundwater
	Laboratory	All samples analysed according to SAQP	Envirolab Services and SGS Australia Pty Ltd are suitably qualified NATA accredited laboratories, therefore all samples were analysed in accordance with the appropriate requirements
	Field	SOPs appropriate and complied with	All samples were recovered in accordance with the SOPs
		Laboratory and inter- laboratory duplicates	Laboratory and inter-laboratory duplicates are analysed as a component of the standard operating procedures of Envirolab Services and SGS Australia Pty Ltd in accordance with the conditions of their NATA accreditation
Precision ⁴	Laboratory	Field duplicates	Intra-laboratory and inter-laboratory soil duplicate samples were recovered at a rate of approximately 6% respectively. Intra-laboratory and inter-laboratory groundwater duplicate samples were recovered at a rate of approximately 33% respectively. The duplicate samples were labelled with sample IDs not known to the laboratories and analysed as detailed within Section 9.1.
		Laboratory-prepared volatile trip spikes	A laboratory-prepared volatile trip spike was prepared and analysed by Envirolab Services Pty Ltd as detailed within Section 9.1
	Field	SOPs appropriate and complied with	All samples were recovered in accordance with the SOPs
Accuracy ⁵	Analysis of field blanks, rinsate blanks, reagent blanks, method blanks, matrix spikes, matrix spike duplicates, surrogate spikes, reference materials, laboratory control samples, and laboratory-prepared spikes		Laboratory quality assurance and quality control samples were analysed by Envirolab Services and SGS Australia Pty Ltd, as summarised in Section 9.2.

<u>Notes:</u> SOP = Standard Operating Procedures; SAQP = Sampling, Analysis and Quality Plan; LOR = Limit of Reporting

- 1. A measure of the amount of useable data (expressed as %) from a data collection activity.
- 2. The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.

- 3. The confidence (expressed qualitatively) that data are representative of each media present on the site.
- 4. A quantitative measure of the variability (or reproducibility) of data.
- 5. A quantitative measure of the closeness of reported data to the true value.

11 Assessment Criteria

11.1 Soil Assessment Criteria

CSTS has been advised that the proposed land use is for retail use to operate a fresh food grocer, along with two (2) additional retail premises and a nursery/café/flower store. CSTS considers this land use complies with the description of commercial/industrial land use within the NEPM 2013.

A publicly accessible orchard is to be created within the north-west of the site, and a native garden bordering the east and south of the site. As a conservative approach, the results from analysis within these areas are to be assessed against the residential land use with accessible gardens.

Therefore, the results of the laboratory analysis for samples pertaining to the retail area have been compared to the following criteria (refer to Table M):

- Health-based Investigation Levels for commercial/industrial land use,
- ➤ Health Screening Levels for vapour intrusion in commercial/industrial land, adopting values for sands at 0 <1m,
- Management Limits for TRH fractions F1-F4 in soils, for commercial and industrial land.
- Generic Ecological Investigation and Screening Levels for commercial/industrial space for aged contamination.

Table M: HIL D Assessment Criteria

Analyte	Unit	HIL D ¹	HSL D ²	EIL/ESL	Management Limit ³				
Priority Metals									
Arsenic	mg/kg	3,000	_	160	_				
Cadmium	mg/kg	900	_	_	_				
Chromium	mg/kg	3,600	_	_	_				
Copper	mg/kg	240,000	_	_	_				
Lead	mg/kg	1,500	_	1,800	_				
Mercury	mg/kg	180	_	_	_				
Nickel	mg/kg	6,000	_	_	_				
Zinc	mg/kg	400,000	_	_	_				
Polycyclic Aro	matic Hy	ydrocarbons							
Total PAH	mg/kg	4,000	_	_	_				
B(a)P	mg/kg	_	_	1.4	_				
B(a)P TEQ ⁴	mg/kg	40	_	_	_				
Volatile Organi	Volatile Organic Compounds								
Benzene	mg/kg	_	3	75	_				
Toluene	mg/kg		NL	135	_				
Ethyl-benzene	mg/kg	_	NL	165	_				
Xylene	mg/kg	_	230	180	_				

	1			1	
Analyte	Unit	HIL D ¹	HSL D ²	EIL/ESL	Management Limit ³
Naphthalene	mg/kg	-	NL	370	_
MTBE	μg/L	_	_	_	_
TCE	mg/kg	_	_	_	_
1,1,1-TCA	mg/kg	_	_	_	_
PCE	mg/kg	_	_	_	_
Cis-1,2-					
dichloroethene	mg/kg	_	_	_	_
Vinyl Chloride	mg/kg	_	_	_	_
		roleum Hydroca	rbons		
TRH F1	mg/kg	_	260	215	700
TRH F2 (>C ₁₀ -	9,9			2.0	. 55
C ₁₆) –	mg/kg	_	_	_	_
Naphthalene	ing/kg				
TRH F2 (>C ₁₀ -					
C ₁₆) (inc.	mg/kg	_	_	170	1,000
Naphthalene)	ilig/kg			170	1,000
TRH F3	mg/kg			1,700	3,500
TRH F4		_	_		10,000
	mg/kg	idos		3,300	10,000
Organochlorin	e Pestic	iaes			
DDT + DDE + DDD	mg/kg	3,600	_	640 ⁵	_
Aldrin + Dieldrin	mg/kg	45	_	_	_
Chlordane	mg/kg	530	_	_	_
Endosulfan	mg/kg	2,000	_	_	_
Endrin	mg/kg	100	_	_	_
Heptachlor	mg/kg	50	_	_	_
HCB	mg/kg	80	_	_	_
Methoxychlor	mg/kg	2,500	_	_	_
Total OCP	mg/kg	-	_	_	_
Polychlorinate		nyle	_	_	_
PCB		7			
Phenois	mg/kg	/	_	_	_
	100 cr/l c cr	240.000			
Total Phenols	mg/kg	240,000	_		_
Other Pesticide		0.000			
Chlorpyrifos	mg/kg	2,000	_	_	_
Bifenthrin	mg/kg	4,500	_	_	_
Total OPP	mg/kg	_	_	_	_
Synthetic Pyrethroids	mg/kg	_	_	_	-
Carbamates					
Carbaryl	mg/kg	_	_	_	_
Carbofuran	mg/kg	_	_	_	_
Molinate	mg/kg	_	_	_	_
Asbestos					
Asbestos	mg/kg	No Detection ⁶	_	_	_
Asbestos –			0.0-		
ACM (>7mm)	%w/w	_	0.05	_	_

Analyte	Unit	HIL D ¹	HSL D ²	EIL/ESL	Management Limit ³
Asbestos – FA/AF	%w/w	-	0.001	_	-

Adapted from Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater of the National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: NL = Not Limiting; ND = No Detection

- 1. Commercial / industrial, includes premises such as shops, offices, factories and industrial sites.
- 2. Investigation level for vapour intrusion, sand 0m to <1m
- 3. Adopted from Commercial and Industrial Management Limits for coarse soils
- 4. Calculated by multiplying the concentration of each carcinogenic PAH in the sample by its potency relative to B(a)P and summing these products
- 5. DDT value only
- 6. No quantitative analysis was conducted for Asbestos, therefore a criterion of 'No Detection' has been adopted

The results of the laboratory analysis of samples relating to the publicly accessible orchards and native garden areas have been compared to the following criteria (refer to Table N):

- ➤ Health-based Investigation Levels for residential land use with accessible gardens,
- ➤ Health Screening Levels (HSLs) for vapour intrusion for low density residential, adopting values for sands at 0 <1m,
- Management Limits for TRH fractions F1-F4 in soils, for residential, parkland and public open space,
- Generic Ecological Investigation and Screening Levels for urban residential and public open space for aged contamination (EIL/ESLs).

Table N: HIL A Assessment Criteria

Table N: HIL A	Assessme	ent Criteria			
Analyte	Unit	HIL A ¹	HSL A ²	EIL/ESL	Management Limits ³
Priority Metals					
Arsenic	mg/kg	100	_	100	_
Cadmium	mg/kg	20	_	_	_
Chromium	mg/kg	100	_	_	_
Copper	mg/kg	6,000	_	_	_
Lead	mg/kg	300	_	1,100	_
Mercury	mg/kg	10	_	_	_
Nickel	mg/kg	400	_	_	_
Zinc	mg/kg	7,400	_	_	_
Polycyclic Aro	matic Hy	drocarbons			
PAH	mg/kg	300	_	_	_
B(a)P	mg/kg	_	_	0.7	_
B(a)P TEQ ⁴	mg/kg	3	_	_	_
Volatile Organi	c Compo	ounds			
Benzene	mg/kg	_	0.5	50	
Toluene	mg/kg	_	160	85	_
Ethyl-benzene	mg/kg	_	55	70	_
Xylene	mg/kg	_	40	105	_
Naphthalene	mg/kg	_	3	170	_
MTBE	μg/L	_	_	_	_
TCE	mg/kg	_	_	_	_
1,1,1-TCA	mg/kg	_	_	_	_
PCE	mg/kg	_	_	_	_
Cis-1,2-	ma/ka				
dichloroethene	mg/kg	_	_	_	_
Vinyl Chloride	mg/kg	-	_	_	1
	ble Petro	oleum Hydrocar	bons		
TRH F1	mg/kg	_	45	180	700
TRH F2 (>C ₁₀ -					
C ₁₆) –	mg/kg	_	110	_	_
Naphthalene					
TRH F2 (>C ₁₀ -					
C ₁₆) (inc.	mg/kg	_	_	120	1,000
Naphthalene)	_				
TRH F3	mg/kg		NL	300	2,500
TRH F4	mg/kg		NL	2,800	10,000
Organochlorin	e Pestici	des		1	
DDT + DDE +	mg/kg	240	_	180 ⁵	_
DDD Aldrin I					
Aldrin +	mg/kg	6	_	_	_
Dieldrin Chlordane		50			
	mg/kg	270	<u> </u>	_	-
Endosulfan	mg/kg		<u> </u>		_
Endrin	mg/kg	10 6	<u> </u>		_
Heptachlor	mg/kg	10		_	-
HCB Mothovyoblor	mg/kg		<u> </u>		-
Methoxychlor	mg/kg	300	_		_

Total OCP					
Polychlorinate	d Bipher	nyls			
PCB	mg/kg	1	_	_	_
Phenols					
Total Phenols	mg/kg	3,000	_	_	_
Other Pesticide	es				
Chlorpyrifos	mg/kg	160	_	_	_
Bifenthrin	mg/kg	600	_	_	_
Total OPP	mg/kg	_	_	_	_
Synthetic	ma/ka				
Pyrethroids	mg/kg	_	_	_	_
Carbamates					
Carbaryl	mg/kg	1	_	_	_
Carbofuran	mg/kg	1	1	_	_
Molinate	mg/kg	1	_	_	_
Asbestos					
Asbestos	mg/kg	No Detection ⁶	ı	-	_
Asbestos –	%w/w	_	0.01	ND	ND
ACM (>7mm)	/O VV/ VV	•	0.01	טוו	שוו
Asbestos –	%w/w	_	0.001	ND	ND
FA/AF	/O VV/ VV	-	0.001	טוו	שוו

Adapted from Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater of the National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: NL = Not Limiting; ND = No Detection

- 1. Residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake (no poultry)), also includes childcare centres, preschools and primary schools.
- 2. HSL A & HSL B Investigation level for vapour intrusion, sand 0m to <1m
- 3. Adopted from Residential, Parkland and Public Open Space Management Limits for coarse soils
- 4. Calculated by multiplying the concentration of each carcinogenic PAH in the sample by its potency relative to B(a)P and summing these products
- 5. DDT Only
- 6. No quantitative analysis was conducted for Asbestos, therefore a criterion of 'No Detection' has been adopted

11.2 Groundwater Assessment Criteria

In order to assess the condition of the groundwater, the results of analysis have been compared to the following criteria (refer to Table O);

- Groundwater Investigation Levels (GILs) for Marine Waters and Drinking Water – NEPM 2013,
- ➤ Groundwater Health Screening Levels (GHSL) for vapour intrusion for low-high residential land use, adopting values for sand at 2m <4m.

Table 0: Groundwater Assessment Criteria

Table 0: Groundwater Asso	essinent	driteria	Manina	Duindin	LICI A Vanasun
Analyte	UOM	LOR	Marine Waters	Drinking Water	HSL - A Vapour Intrusion
Metals & Metalloids			Waters	Water	mitasion
Arsenic	μg/L	1	-	10	-
Cadmium	μg/L	0.1	0.73	2	-
Chromium	μg/L	1	4.4	50	-
Copper	μg/L	1	1.3	2,000	-
Lead	μg/L	1	4.4	10	-
Mercury	μg/L	0.1	0.13	1	_
Nickel	μg/L	1	7	20	_
Zinc	μg/L	5	15	3,000 ⁸	-
Chlorinated Alkanes	1 1 3 1		-	-,	
1,1,1,2-tetrachloroethane	μg/L	0.5	-	-	-
1,1,1-trichloroethane	μg/L	0.5	-	-	-
1,1,2,2-tetrachloroethane	μg/L	0.5	-	-	-
1,1,2-trichloroethane	μg/L	0.5	1,900	-	-
1,1-dichloroethane	μg/L	0.5	-	-	-
1,2,3-trichloropropane	μg/L	0.5	-	-	-
1,2-dibromo-3-chloropropane	μg/L	0.5	-	-	-
1,2-dichloroethane	μg/L	0.5	-	3	-
1,2-dichloropropane	μg/L	0.5	-	-	-
1,3-dichloropropane	μg/L	0.5	-	-	-
2,2-dichloropropane	μg/L	0.5	-	-	-
Bromodichloromethane	μg/L	0.5	-		-
Dibromochloromethane	μg/L	0.5	-	250	-
Chloroform	μg/L	0.5	-		-
Carbon Tetrachloride	μg/L	0.5	-	3	-
Chloroethane	μg/L	5	-	-	-
Chloromethane	μg/L	5	-	-	-
Dichlorodifluromethane	μg/L	5	-	-	-
Trichlorofluoromethane	μg/L	1	-	-	-
Chlorinated Alkenes					
1,1,2,2-tetrachloroethylene	μg/L	0.5	70	50	-
1,1-dichloroethene	μg/L	0.5	-	30	-
1,1-dichloropropene	μg/L	0.5	-	-	-
2-chlorotoluene	μg/L	0.5	-	-	-
4-chlorotoluene	μg/L	0.5	-	-	-
Cis-1,2-dichloroethene	μg/L	0.5	0.5	60	-
Trans-1,2-dichloroethene	μg/L	0.5	0.5	60	-
Cis-1,3-dichloropropene	μg/L	0.5	-	100	-
Trans-1,3-dichloropropene	μg/L	0.5	-	100	-
Trichloroethene	μg/L	0.5	330 ⁶	-	-
Vinyl Chloride	μg/L	0.3	100 ⁶	0.34	-
Miscellaneous Hydrocarbons					
1,2-dibromoethane	μg/L	0.5	-	-	-
Bromoform	μg/L	0.5	-	-	-
Bromomethane	μg/L	10	-	-	-
Dibromomethane	μg/L	0.5	-	-	-

					,
Analyte	UOM	LOR	Marine Waters	Drinking Water	HSL - A Vapour Intrusion
Monocyclic Aromatic Hydrocar	bons				
1,2,4-trimethyl benzene	μg/L	0.5	-	-	-
1,3,5-trimethyl benzene	μg/L	0.5	-	-	-
4,isopropopyl Toluene	μg/L	0.5	-	-	-
Bromobenzene	μg/L	0.5	-	-	-
Isopropylbenzene	μg/L	0.5	-	-	-
n-butyl benzene	μg/L	0.5	_	-	-
n-propyl benzene	μg/L	0.5	_	-	_
Sec-butyl benzene	μg/L	0.5	_	_	_
Styrene	µg/L	0.5	30	30	_
Tert-butyl benzene	μg/L	0.5	_	-	_
Polycyclic Aromatic Hydrocarb		0.0			
Naphthalene	μg/L	0.02	50	-	NL
Acenaphthylene	μg/L	0.01	-	_	-
Acenaphthene	μg/L	0.01	_	_	_
Fluorene	μg/L	0.01	_	_	_
Phenanthrene	μg/L μg/L	0.01	0.6 ⁶	-	_
Anthracene	μg/L μg/L	0.01	0.0 0.1 ⁶		_
Fluoranthene	μg/L μg/L	0.01	16	-	
Pyrene	μg/L μg/L	0.01	-	-	_
•		0.01		-	-
Benzo(a)anthracene	µg/L			-	-
Chrysene	µg/L	0.01		-	-
Benzo(b,j+k)fluoranthene	μg/L	0.02	-	- 0.04	-
Benzo(a)pyrene	μg/L	0.01	-	0.01	-
Indeno(1,2,3-c,d)pyrene	μg/L	0.01	-	-	-
Dibenzo(a,h)anthracene	μg/L	0.01	-	-	-
Benzo(g,h,i)perylene	μg/L	0.01	-	-	-
Carcinogenic PAH (B(a)P TEQ)	μg/L	0.012	-	-	-
Total PAH (Sum) BTEX	μg/L	0.1	-	-	-
	110/1	0.5	F0	1	900
Benzene	μg/L	0.5	50	1	800
Toluene	μg/L	0.5	180	800	NL NI
Ethyl-benzene	μg/L	0.5	5	300	NL
m+p- Xylene	μg/L	0.5	200	600	NL
o-Xylene	μg/L	0.5	350		
Chlorinated Benzenes	/1	0.5			
1,2,3-trichlorobenzene	μg/L	0.5	-	30	-
1,2,4-Trichlorobenzene	μg/L	0.5	20	4.500	-
1,2-dichlorobenzene	µg/L	0.5	-	1,500	-
1,3-dichlorobenzene	μg/L	0.5	-	-	-
1,4-dichlorobenzene	μg/L	0.3	-	40	-
TRH NEPM 1999					
TRH C ₆ -C ₉	μg/L	20	-	-	-
TRH C ₁₀ -C ₁₄	μg/L	50	-	-	-
TRH C ₁₅ -C ₂₈	μg/L	100	-	-	-
TRH C ₂₉ -C ₃₆	μg/L	50	-	-	-
TRH C ₁₀ -C ₃₆	μg/L	100	-	-	-
TRH NEPM 2013			_		
TRH F1	μg/L	20	-	-	1,000
TRH F2	μg/L	60	-	-	1,000
TRH F3	μg/L	200	-	-	-
TRH F4	μg/L	100	-	-	-
Phenois					
Total Phenolics	μg/L	50	400	-	-
Polychlorinated Biphenyls					
Arochlor 1016	μg/L	2	-	-	-
Arochlor 1221	μg/L	2	-	-	-

Analyte	UOM	LOR	Marine Waters	Drinking Water	HSL - A Vapour Intrusion
Arochlor 1232	μg/L	2	-	•	=
Arochlor 1242	μg/L	2	-	•	-
Arochlor 1248	μg/L	2	-	•	-
Arochlor 1254	μg/L	2	-	•	-
Arochlor 1260	μg/L	2	-	•	-
Total PCBs	μg/L	2	-	-	-

- 1. Australian Drinking Water Guidelines (NHMRC 2016)
- 2. 95% Marine Trigger Values for Marine Water (ANZECC/ARMCANZ 2000)
- 3. 99% species protection as recommended by ANZECC/ARMCANZ 2000
- 4. Laboratory limit of reporting is adopted as the criterion in absence of EPA endorsed assessment value
- 5. Laboratory limit of reporting is adopted as this greater than the criterion
- 6. Indicative Interim Working Level (ANZECC/ARMCANZ 2000)
- 7. Vapour intrusion level for HSL A and HSL B in sand 2-4m (NEPM 2013) as a conservative approach
- 8. Value for Aesthetic consideration

12 Results

The laboratory analysis of the recovered samples was undertaken by experienced technicians from Envirolab Services Pty Ltd and SGS Australia Pty Ltd in accordance with relevant Australian Standards and the conditions of their NATA accreditation.

12.1 Soil Analysis - Proposed Retail Area

The laboratory analysis detected Arsenic, Chromium, Copper, Lead, Nickel, Zinc, BTEX and Total PAH within the recovered soil samples. All of the detected concentrations were within the respective HIL/HSL D criteria for commercial/industrial land-use.

The detected concentrations were also within the applicable EIL/ESL criteria for commercial/industrial land-use.

No concentrations of Cadmium, Mercury, TRH F1 – F4, B(a)P, B(a)P TEQ, VOCs, Phenols, PCBs, OCPs, other Pesticides, Carbamates or Asbestos were detected within any of the recovered samples above the respective LORs.

Refer to Table P.

12.2 Soil Analysis - Proposed Public Orchard Area

The laboratory analysis detected Arsenic, Chromium, Copper, Lead, Nickel, Zinc, TRH F2, TRH F3, TRH F4, B(a)P and Total PAH within the recovered soil samples. All of the detected concentrations were within the respective HIL A criteria for residential land-use with accessible soils.

With the exception of TRH F3 within BH9, all of the detected concentrations were also within the applicable EIL/ESL criteria for urban residential and public open space. The concentration of TRH F3 within BH9 exceeded the respective EIL/ESL criteria.

No concentrations of Cadmium, Mercury, BTEXN, TRH F1, VOCs, B(a)P TEQ, Phenols, OCPs, other pesticides, Carbamates or Asbestos were detected within any of the recovered samples above the respective LORs.

Refer to Table Q.

12.3 Groundwater Analysis

The laboratory analysis detected concentrations of Arsenic, Chromium, Copper, Nickel, Zinc and Acenaphthene (PAH) within the recovered groundwater samples. The concentrations of Arsenic and Chromium were within the respective groundwater criteria. Acenaphthene (PAH) does not have assessment criteria for comparison.

The concentrations of Copper, Nickel and Zinc within all samples exceeded the respective Marine Waters criteria. Furthermore, the concentrations of Nickel in MW1 and MW3 exceeded the respective Drinking Water criteria.

No concentrations of Cadmium, Lead, Mercury, Chlorinated Alkanes, Chlorinated Alkenes, Miscellaneous Hydrocarbons, Monocyclic Aromatic Hydrocarbons, BTEX, TRH, Chlorinated Benzenes, Phenols or PCBs were detected within any of the recovered samples above the respective LORs.

Refer to Table R.

Table P: Laboratory Analysis - Proposed Retail Area

Table	. Labo	ratory 1	marysi	, 110 ₁	Priority	Metals						TRH								VOCs					
Borehole ID	Depth (m)	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	TRH F1 (mg/kg)	TRH F2(mg/kg)	TRH F2 (inc. Naphthalene) (mg/kg)	TRH F3 (mg/kg)	TRH F4 (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl-benzene (mg/kg)	Xylenes (mg/kg)	Naphthalene (mg/kg)	MTBE (µg/L)	TCE (mg/kg)	1,1,1-TCA (mg/kg)	PCE (mg/kg)	Cis-1,2- dichloroethene (mg/kg)	Vinyl Chloride (mg/kg)
LC		4	0.4	1	1	1	0.1	1	1	25	50	50	100	100	0.2	0.5	1	1	0.1	1	1	1	1	1	1
	0.5	5	<0.4	19	6	20	<0.1	6	21	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
BH1	1.5	7	<0.4	38	8	17	<0.1	10	21	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	2.5	4	<0.4	8	3	15	<0.1	<1	1	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
внз	0.5	5	<0.4	19	5	33	<0.1	4	25	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
Dilo	1.5	5	<0.4	26	5	17	<0.1	8	14	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	0.5	<4	<0.4	11	55	41	<0.1	3	47	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
BH4	1.5	6	<0.4	27	7	18	<0.1	8	17	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	2.5	6	<0.4	33	4	15	<0.1	8	18	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	0.5	4	<0.4	17	2	14	<0.1	3	13	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
BH5	1.5	5	<0.4	29	4	17	<0.1	10	21	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	2.5	4	<0.4	9	1	13	<0.1	<1	2	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
вн6	0.5	8	<0.4	35	8	14	<0.1	18	18	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
DI 10	1.5	<4	<0.4	5	14	19	<0.1	1	2	<25	<50	<50	<100	<100	<0.2	< 0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	0.5	11	<0.4	27	2	15	<0.1	4	12 ²	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	0.1	<1	<1	<1	<1	<1	<1
BH10	1.5	<4	<0.4	5	<1	14	<0.1	<1	<1	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	2.5	<4	<0.4	9	6	17	<0.1	<1	1	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	0.5	4	<0.4	15	<1	15	<0.1	2	4	<25	<50	<50	<100	<100	1	<0.5	<1	<1	0.2	<1	<1	<1	<1	<1	<1
BH11	1.5	6	<0.4	8	<1	6	<0.1	<1	<1	<25	<50	<50	<100	<100	2	5	1	6	0.2	<1	<1	<1	<1	<1	<1
	2.3	<4	<0.4	7	7	10	<0.1	<1	1	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
BH12	1.0	7	<0.4	13	<1	14	<0.1	<1	2	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
DITIZ	1.8	<4	<0.4	15	2	12	<0.1	<1	<1	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
BH13	1.0	6	<0.4	27	3	13	<0.1	6	15	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
Dillo	2.0	5	<0.4	6	<1	15	<0.1	<1	<1	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	0.5	<4	<0.4	18	3	15	<0.1	6	12	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
BH14	1.5	5	<0.4	10	<1	15	<0.1	<1	1	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
	2.5	<4	<0.4	5	<1	23	<0.1	<1	<1	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
HIL D		3,000	900	3,600	240,000	1,500	180	6,000	400,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HSL D		-	-	-	-	-	-	-	-	260	NL	-	-	-	3	NL	NL	230	NL	-	-	-	-	-	-
EIL/ESI		160	-	-	-	1,800	-	-	-	215	-	170	1,700	3,300	75	135	165	180	370	-	-	-	-	-	-
Manage Limit	ement	-	-	-	-	-	-	-	-	700	-	1,000	3,500	10,000	-	-	-	1	-	-	-	-	-	-	-

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191179, SGS Australia Pty Ltd Analytical Report SE178970, NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: Shaded = Exceeds HSL D Criteria; Bold = Exceeds ElL/ESL Criteria; Italicised = Exceeds Management Limit; NL = Not Limiting

1. Value adopted from intra-laboratory duplicate sample

2. Value adopted from inter-laboratory duplicate sample

3. Value adopted from laboratory 'triplicate' sample

Table P: Laboratory Analysis - Proposed Retail Area (Continued)

Tuble	Lubo	latory	PAH	Пор	Phenol	II M Ca	(Contin	ucuj		OCPs						Other Pe	sticides		PCBs	Ca	arbamat	96		Asbesto	ne .
			1 011				ч			0013										06		<i>-</i> 5			,s
Borehole ID	Depth (m)	B(a)P (mg/kg)	B(a)P TEQ (mg/kg)	Total PAH (mg/kg)	Phenois (Total) (mg/kg)	DDT+DDE+DDD (mg/kg)	Aldrin & Dieldrin (mg/kg)	Chlordane (mg/kg)	Endosulfan (mg/kg)	Endrin (mg/kg)	Hepthaclor (mg/kg)	HCB (mg/kg)	Methoxychlor (mg/kg)	OCP (Total) (mg/kg)	Chlorpyrifos(mg/kg)	Bifenthrin (mg/kg)	OPP (Total) (mg/kg)	Sythnetic Pyrethroids (Total) (mg/kg)	PCBs (Total) (mg/kg)	Carbaryl (mg/kg)	Carbofuran (mg/kg)	Molinate (mg/kg)	Visible Asbestos Present	ACM (>7mm) (%w/w)	FA/AF Asbestos
LC)R	0.05	0.5	0.05	5	0.1	0.2	0.2	0.3	0.1	0.1	0.1	0.1	1.8	0.1	0.5	1.2	7	0.1	0.5	0.5	0.5	-	0.01	0.001
	0.5	<0.05	<0.5	<0.05	<5	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	<0.001
BH1	1.5	<0.05	<0.5	<0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
	2.5	<0.05	<0.5	<0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
внз	0.5	<0.05	<0.5	<0.05	<5	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	<0.001
כוום	1.5	<0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	•	-	-	-	-	-	-	<0.1	-	-	-	ı	-	-
	0.5	< 0.05	<0.5	< 0.05	<5	<0.1	<0.2	<0.2	< 0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	<0.001
BH4	1.5	<0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
	2.5	< 0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
	0.5	< 0.05	<0.5	< 0.05	<5	<0.1	<0.2	<0.2	< 0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	< 0.001
BH5	1.5	< 0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	1	-	-	-	-	-	-	<0.1	-	-	-	-	-	_
	2.5	< 0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
DLIC	0.5	< 0.05	<0.5	< 0.05	<5	<0.1	<0.2	<0.2	< 0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	< 0.001
BH6	1.5	<0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
	0.5	< 0.05	<0.5	0.1	<5	<0.1	<0.2	<0.2	< 0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	<0.001
BH10	1.5	< 0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	1	-	-	-	-	-	-	<0.1	-	-	-	-	-	_
	2.5	< 0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
	0.5	< 0.05	<0.5	0.2	<5	<0.1	<0.2	<0.2	< 0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	< 0.001
BH11	1.5	< 0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	1	-	-	-	-	-	-	<0.1	-	-	-	-	-	_
	2.3	< 0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
BH12	1.0	< 0.05	<0.5	< 0.05	<5	<0.1	<0.2	<0.2	< 0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	< 0.001
ВΠΙΖ	1.8	<0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-			
DUIAO	1.0	< 0.05	<0.5	< 0.05	<5	<0.1	<0.2	<0.2	< 0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	<0.001
BH13	2.0	<0.05	<0.5	< 0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
	0.5	< 0.05	<0.5	0.1	<5	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	<0.001
BH14	1.5	<0.05	<0.5		<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
	2.5	<0.05	<0.5	<0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
HIL D		-	40	4,000	240,000	3,600	45	530	2,000	100	50	80	2,500	-	2,000	4,500	-	-	7	-	-	-			
HSL D		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EIL/ESI	_ D	1.4	-	-	-	640	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
Manage Limit	ement	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191179, SGS Australia Pty Ltd Analytical Report SE178970, NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: Shaded = Exceeds HSL D Criteria; Bold = Exceeds EIL/ESL Criteria; Italicised = Exceeds Management Limit; NL = Not Limiting

1. Value adopted from intra-laboratory duplicate sample

2. Value adopted from inter-laboratory duplicate sample

3. Value adopted from laboratory 'triplicate' sample

Table Q: Laboratory Analysis - Public Orchard & Native Garden Area

Tuble	Q. Labo.				Priority	Metals						TRH								VOCs					
Borehole ID	Depth (m)	Arsenic (mg/kg)	Cadmium (mg/kg)	Chromium (mg/kg)	Copper (mg/kg)	Lead (mg/kg)	Mercury (mg/kg)	Nickel (mg/kg)	Zinc (mg/kg)	TRH F1 (mg/kg)	TRH F2(mg/kg)	TRH F2 (inc. Naphthalene) (mg/kg)	TRH F3 (mg/kg)	TRH F4 (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl-benzene (mg/kg)	Xylenes (mg/kg)	Naphthalene (mg/kg)	MTBE (µg/L)	TCE (mg/kg)	1,1,1-TCA (mg/kg)	PCE (mg/kg)	Cis-1,2- dichloroethene (mg/kg)	Vinyl Chloride (mg/kg)
LO	OR .	4	0.4	1	1	1	0.1	1	1	25	50	50	100	100	0.2	0.5	1	1	0.1	1	1	1	1	1	1
BH2	0.5	5	<0.4	20	5	16	<0.1	4	52	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
DITZ	1.5	6	<0.4	27	4	15	<0.1	5	17	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
BH7	0.2	14	<0.4	32	42	10	<0.1	39	54	<25	<50	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
BH8	0.2	5	<0.4	32	10 ³	22	<0.1	6	19	<25	<50	<50	220	<100	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
BH9	0.2	16	<0.4	38	28 ³	23	<0.1	39 ³	37	<25	69	69	340	130	<0.2	<0.5	<1	<1	<0.1	<1	<1	<1	<1	<1	<1
HIL A		100	20	100	6,000	300	10	400	7,400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HSL A		-	-	-	-	-	-	-	-	45	110	-	-	-	0.5	160	55	40	3	-	-	-	-	-	-
EIL/ES		100	-	-	-	1,100	-	-	-	180	-	120	300	2,800	50	85	70	105	170	-	-	-	-	-	-
Manag Limit	ement	-	-	-	-	-	-	-	-	700	-	1,000	2,500	10,000	-	-	-	-	-	-	-	-	-	-	-

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191179, SGS Australia Pty Ltd Analytical Report SE178970, NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: Shaded = Exceeds HSL A Criteria; Bold = Exceeds ElL/ESL Criteria; Italicised = Exceeds Management Limit; NL = Not Limiting

Value adopted from intra-laboratory duplicate sample
 Value adopted from inter-laboratory duplicate sample

^{3.} Value adopted from laboratory 'triplicate' sample

Table P: Laboratory Analysis - Proposed Public Orchard & Native Garden Area (Continued)

			PAH	ТТОРС	Phenol					OCPs						Other Pe	esticide	S	PCBs	Ca	arbamat	es		Asbesto	S
Borehole ID	Depth (m)	B(a)P (mg/kg)	B(a)P TEQ (mg/kg)	Total PAH (mg/kg)	Phenols (Total) (mg/kg)	DDT+DDE+DDD (mg/kg)	Aldrin & Dieldrin (mg/kg)	Chlordane (mg/kg)	Endosulfan (mg/kg)	Endrin (mg/kg)	Hepthaclor (mg/kg)	HCB (mg/kg)	Methoxychlor (mg/kg)	OCP (Total) (mg/kg)	Chlorpyrifos(mg/kg)	Bifenthrin (mg/kg)	OPP (Total) (mg/kg)	Sythnetic Pyrethroids (Total) (mg/kg)	CBs	Carbaryl (mg/kg)	Carbofuran (mg/kg)	Molinate (mg/kg)	Visible Asbestos Present	ACM (>7mm) (%w/w)	FA/AF Asbestos
L	OR	0.05	0.5	0.05	5	0.1	0.2	0.2	0.3	0.1	0.1	0.1	0.1	1.8	0.1	0.5	1.2	7	0.1	0.5	0.5	0.5	-	0.01	0.001
BH2	0.5	<0.05	<0.5	<0.05	<5	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	<0.5	No	<0.01	<0.001
	1.5	<0.05	<0.5	<0.05	<5	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.1	-	-	-	-	-	-
BH7	0.2	<0.05	<0.5	<0.05	<5	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	<0.5	<0.5	< 0.5	No	<0.01	<0.001
BH8	0.2	0.1	<0.5	1.9	<5	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	< 0.5	<0.5	< 0.5	No	<0.01	<0.001
BH9	0.2	<0.05	<0.5	<0.05	<5	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<1.8	<0.1	<0.5	<1.2	<7	<0.1	< 0.5	<0.5	< 0.5	No	<0.01	<0.001
HIL A		-	3	300	3,000	240	6	50	270	10	6	10	300	-	160	600	-	-	1	-	-	-			
HSL A		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EIL/ES		0.7	-	-	-	180	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manag Limit	ement	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191179, SGS Australia Pty Ltd Analytical Report SE178970, NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: Shaded = Exceeds HSL A Criteria; Bold = Exceeds EIL/ESL Criteria; Italicised = Exceeds Management Limit; NL = Not Limiting

^{1.} Value adopted from intra-laboratory duplicate sample

Value adopted from inter-laboratory duplicate sample
 Value adopted from laboratory 'triplicate' sample

Table R: Groundwater Sample Analysis (ug/L)

rable K. Groun		Juli		etals and		oids											Chlori	nated Al	kanes								
	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	1,1,1,2-tetrachloroethane	1,1,1-trichloroethane	1,1,2,2-tetrachloroethane	1,1,2-trichloroethane	1,1-dichloroethane	1,2,3-trichloropropane	1,2-dibromo-3-chloropropane	1,2-dichloroethane	1,2-dichloropropane	1,3-dichloropropane	2,2-dichloropropane	Bromodichloromethane	Dibromochloromethane	Chloroform	Carbon tetrachloride	Chloroethane	Chloromethane	Dichlorodifluromethane	Trichlorofluoromethane
LOR	1	0.1	1	1	1	0.05	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10	10	10	10
MW1	5 ¹⁰	<0.1	2 ¹¹	5 ¹⁰	<1	<0.05	22	45	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<10	<10	<10
MW2	<1	<0.1	<1	11	<1	<0.05	15	77	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<10	<10	<10
MW3	1	<0.1	<1	4	<1	<0.05	57	22	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<10	<10	<10
Drinking Water ¹	10	2	50	2,000	10	1	20	3,000 ⁸	-	-	-	-	-	-	-	3	-	-	-		250		3	-	-	-	-
Marine Aquatic Ecosystem ²	-	0.73	4.4	1.3	4.4	0.1 ³	7	15	-	-	-	1,900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HSL A Vapour Intrusion ⁷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191419, SGS Australia Pty Ltd Analytical Report SE178971, NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: Bold = Exceeds Drinking Water Criteria; Shaded = Exceeds Marine Trigger Value; Italicised = Exceeds HSL A Criteria; NL = Not Limiting

- Australian Drinking Water Guidelines (NHMRC 2011)(NEPM 2013)
 95% Marine Trigger Values for Marine Water (ANZECC/ARMCANZ 2000) (NEPM 2013)
 99% species protection as recommended by ANZECC/ARMCANZ 2000
- Laboratory limit of reporting is adopted as the criterion in absence of EPA endorsed assessment value
- Laboratory limit of reporting is adopted as this greater than the criterion Indicative Interim Working Level (ANZECC/ARMCANZ 2000)
- Vapour intrusion level for HSL A and HSL B in Sand 2-4m (NEPM 2013)
- 8. Value for aesthetic consideration
- Value adopted from intra-laboratory duplicate due to RPD exceedance
- 10. Value adopted from inter-laboratory duplicate due to RPD exceedance

Table R: Groundwater Sample Analysis (ug/L) (Continued)

Table R: Ground	iwatei	Sampi	t Alidi	y 515 (µ																					
					Chlo	rinated	Alkenes	;				Misc	ellaneous	Hydrocar	bons				Monocycl	ic Aromat	tic Hydro	carbons			
	Tetrachloroethene	1,1-Dichloroethene	1,1-dichloropropene	2-chlorotoluene	4-chlorotoluene	Cis-1,2-dichloroethene	Trans-1,2-dichloroethene	Cis-1,3-dichloropropene	Trans-1,3-dichlorpropene	Trichloroethene	Vinyl Chloride	1,2-dibromoethane	Bromoform	Bromomethane	Dibromomethane	1,2,4-trimethyl benzene	1,3,5-trimethyl benzene	4-isopropopyl Toluene	Bromobenzene	Isopropylbenzene	n-butyl benzene	n-propyl benzene	Sec-butyl benzene	Styrene	Tert-butyl benzene
LOR	1	1	1	1	1	1	1	1	1	1	1	1	1	10	1	1	1	1	1	1	1	1	1	1	1
MW1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW3	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Drinking Water ¹	50	30	-	-	-	6	0	10	00	-	0.35			-	-	-	-	-	-	-	-	-	-	30	-
Marine Aquatic Ecosystem ²	70	-	-	-	-	0.5	0.5	-	-	330 ⁶	100 ⁶	-	-	-	-	-	-	-	-	-	-	-	-	30	-
HSL A Vapour Intrusion ⁷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191419, SGS Australia Pty Ltd Analytical Report SE178971, NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: Bold = Exceeds Drinking Water Criteria; Shaded = Éxceeds Marine Trigger Value; Italicised = Exceeds HSL A Criteria; NL = Not Limiting

- Australian Drinking Water Guidelines (NHMRC 2011)(NEPM 2013)
 95% Marine Trigger Values for Marine Water (ANZECC/ARMCANZ 2000) (NEPM 2013)
 99% species protection as recommended by ANZECC/ARMCANZ 2000
- 14. Laboratory limit of reporting is adopted as the criterion in absence of EPA endorsed assessment value
- 15. Laboratory limit of reporting is adopted as this greater than the criterion
 16. Indicative Interim Working Level (ANZECC/ARMCANZ 2000)
- 17. Vapour intrusion level for HSL A and HSL B in Sand 2-4m (NEPM 2013)
- 18. Value for aesthetic consideration
- 19. Value adopted from intra-laboratory duplicate due to RPD exceedance
- 20. Value adopted from inter-laboratory duplicate due to RPD exceedance

Table R: Groundwater Sample Analysis (ug/L) (Continued)

Table R: Grou	nuwate	zi Salli	pie All	aiy515 ((μg/ L)	Conti																					
		Polycyclic Aromatic Hydrocarbons								BTEX					CI	nlorinated	l Benzen	es									
	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a)anthracene	Chrysene	Benzo(b,j+k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-c,d)pyrene	Dibenzo(a,h)anthracene	Benzo(g,h,i)perylene	Carcinogenic PAH (as B(a)P TEQ)	Total PAH (sum)	Benzene	Toluene	Ethyl-benzene	m+p-Xylene o-Xylene	1,2,3-trichlorobenzene	1,2,4-trichlorobenzene	1,2-dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Chlorobenzene
LOR	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	5	1	1	1	1	2 1	1	1	1	1	1	1
MW1	<1	<1	2	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<5	2	<1	<1	<1	<2 <1	<1	<1	<1	<1	<1	<1
MW2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<5	<1	<1	<1	<1	<2 <1	<1	<1	<1	<1	<1	<1
MW3	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<2	<1	<1	<1	<1	<5	<1	<1	<1	<1	<2 <1	<1	<1	<1	<1	<1	<1
Drinking Water ¹	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	-	-	-	1	800	300	600	;	30	1,500	•	40	300
Marine Aquatic Ecosystem ²	50	-	-	-	0.6 ⁶	0.01 ⁶	1 ⁶	-	-	-	-	-	-	-	-	-	-	500	180	5	200 350	-	20	-	-	-	-
HSL A Vapour Intrusion ⁷	NL	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	800	NL	NL	NL	-	-	-	-	-	-

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191419, SGS Australia Pty Ltd Analytical Report SE178971, NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: Bold = Exceeds Drinking Water Criteria; Shaded = Éxceeds Marine Trigger Value; Italicised = Exceeds HSL A Criteria; NL = Not Limiting

- Australian Drinking Water Guidelines (NHMRC 2011)(NEPM 2013)
 95% Marine Trigger Values for Marine Water (ANZECC/ARMCANZ 2000) (NEPM 2013)
 99% species protection as recommended by ANZECC/ARMCANZ 2000
- 24. Laboratory limit of reporting is adopted as the criterion in absence of EPA endorsed assessment value
- 25. Laboratory limit of reporting is adopted as this greater than the criterion
 26. Indicative Interim Working Level (ANZECC/ARMCANZ 2000)
- 27. Vapour intrusion level for HSL A and HSL B in Sand 2-4m (NEPM 2013)
- 28. Value for aesthetic consideration
- 29. Value adopted from intra-laboratory duplicate due to RPD exceedance
- 30. Value adopted from inter-laboratory duplicate due to RPD exceedance

Table R: Groundwater Sample Analysis (µg/L) (Continued)

	TRH NEPM 1999						TRH NEPM 2013				
	TRH C ₆ -C ₉	TRH C ₁₀ -C ₁₄	TRH C ₁₅ -C ₂₈	TRH C ₂₉ -C ₃₆	TRH C ₁₀ -C ₃₆	TRH F1	TRH F2	TRH F3	TRH F4	Total Phenolics	
LOR	10	50	100	100	250	10	50	100	100	50	
MW1	<10	<50	<100	<100	<250	<10	<50	<100	<100	<0.05	
MW2	<10	<50	<100	<100	<250	<10	<50	<100	<100	<0.05	
MW3	<10	<50	<100	<100	<250	<10	<50	<100	<100	<0.05	
Drinking Water ¹	-	-	-	-	-	-	-	-	-	-	
Marine Aquatic Ecosystem ²	-	-	-	-	-	-	-	-	-	400	
HSL A Vapour Intrusion ⁷	-	-	-	-	-	1,000	1,000	-	-	-	

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191419, SGS Australia Pty Ltd Analytical Report SE178971, NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013)

Notes: Bold = Exceeds Drinking Water Criteria; Shaded = Exceeds Marine Trigger Value; Italicised = Exceeds HSL A Criteria; NL = Not Limiting

- Australian Drinking Water Guidelines (NHMRC 2011)(NEPM 2013)
- 2. 95% Marine Trigger Values for Marine Water (ANZECC/ARMCANZ 2000) (NEPM 2013)
- 3. 99% species protection as recommended by ANZECC/ARMCANZ 2000
- 4. Laboratory limit of reporting is adopted as the criterion in absence of EPA endorsed assessment value
- 5. Laboratory limit of reporting is adopted as this greater than the criterion
- 6. Indicative Interim Working Level (ANZECC/ARMCANZ 2000)
- 7. Vapour intrusion level for HSL A and HSL B in Sand 2-4m (NEPM 2013)
- 8. Value for aesthetic consideration
- 9. Value adopted from intra-laboratory duplicate due to RPD exceedance
- 10. Value adopted from inter-laboratory duplicate due to RPD exceedance

Table R: Groundwater Sample Analysis (µg/L) (Continued)

	Polychlorinated Biphenyls								
	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	Total PCBs	
LOR	2	2	2	2	2	2	2	2	
MW1	<2	<2	<2	<2	<2	<2	<2	<2	
MW2	<2	<2	<2	<2	<2	<2	<2	<2	
MW3	<2	<2	<2	<2	<2	<2	<2	<2	
Drinking Water ¹	-	-	-	-	-	-	-	-	
Marine Aquatic Ecosystem ²	-	-	-	-	-	-	-	-	
HSL A Vapour Intrusion ⁷	-	-	-	-	-	-	-	-	
HSL D Vapour Intrusion ⁸	-	-	-	-	-	-	-	-	

Adapted from Envirolab Services Pty Ltd Certificate of Analysis 191419, SGS Australia Pty Ltd Analytical Report SE178971, NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013) Notes: Bold = Exceeds Drinking Water Criteria; Shaded = Exceeds Marine Trigger Value; Italicised = Exceeds HSL A Criteria; NL = Not Limiting

- 1. Australian Drinking Water Guidelines (NHMRC 2011)(NEPM 2013)
- 2. 95% Marine Trigger Values for Marine Water (ANZECC/ARMCANZ 2000) (NEPM 2013)
- 3. 99% species protection as recommended by ANZECC/ARMCANZ 2000
- 4. Laboratory limit of reporting is adopted as the criterion in absence of EPA endorsed assessment value
- 5. Laboratory limit of reporting is adopted as this greater than the criterion
- 6. Indicative Interim Working Level (ANZECC/ARMCANZ 2000)
- 7. Vapour intrusion level for HSL A and HSL B in Sand 2-4m (NEPM 2013)
- 8. Value for aesthetic consideration
- 9. Value adopted from intra-laboratory duplicate due to RPD exceedance
- 10. Value adopted from inter-laboratory duplicate due to RPD exceedance

13 Site Characterisation

The laboratory analysis of the soil samples detected concentrations of Arsenic, Chromium, Copper, Lead, Nickel, Zinc, BTEX, TRH, PAH within the recovered samples. Based on the location of samples in comparison to the proposed land-use setting (retail occupancies and publicly accessible orchard and native gardens), all of the detected concentrations were within the respective HILs for the proposed development.

Within the proposed public orchard and native garden area, one (1) sample (BH9 0.2m) recorded a TRH F3 value in excess of the respective ESL criterion. Though this value exceeded the criterion, based on the proposed development and the creation of a publicly accessible orchard at this location, minor excavations and replacement with suitable growing medium will be required. The importation of suitable growing medium is considered adequate to alleviate the potential ecological impact arising from the minor elevated concentration of TRH F3. No other ecological risks were identified within the soil samples.

Laboratory analysis of the groundwater samples detected concentrations of Arsenic, Chromium, Copper, Nickel, Zinc and PAH. The detected concentrations of Copper, Nickel and Zinc within all samples exceeded the Marine Waters criteria, whilst Nickel within MW1 and MW3 also exceeded the drinking water criteria. CSTS considers the concentrations of Copper and Zinc may be attributable to potentially leaking water supply infrastructure. The detected concentrations of Arsenic and Chromium were within the respective Marine Waters and Drinking Water criteria.

The elevated concentration of Acenaphthene (PAH) was detected in MW1 down-gradient of a suspected UST, though was not recorded in MW3, further down-gradient, indicating that the concentration was not persisting beyond the site boundary. The source of the elevated concentration is considered to likely be remnant from the suspected UST, which would be removed from site during redevelopment works for the creation of basement parking. Removal of the suspected source during the redevelopment would likely result in a decrease in the PAH concentrations.

Though elevated concentrations of Nickel were encountered throughout the site, no groundwater wells were identified within 500m of the site, limiting the potential for the wider community to access the groundwater. The receiving marine waters are also a considerable distance from the site and may result in the concentrations dissipating. Additionally, the groundwater within the surrounding area is generally not considered a source of drinking water.

It is anticipated that the existing groundwater monitoring wells are to be removed during the redevelopment of the site, further limiting access to the groundwater. A sealed basement design would also eliminate future site users from accessing the groundwater. As such, the pathway between potentially impacted groundwater and possible receptors is considered incomplete. Therefore, the condition of the groundwater is considered to not impact upon the suitability of the site for the proposed development.

14 Conclusions and Recommendations

Based on the conducted assessment, CSTS has concluded that the site known as 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW is of a **suitable condition**, from a contamination perspective, for the proposed land use, and does not pose an unacceptable risk to human health or the surrounding environment in accordance with the *National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013).*

CSTS recommends that, during the process of development, should any indicators of potential contamination be encountered, this office is contacted immediately for further assessment. Should there be any change in the proposed development, all conclusions and recommendations are to be reviewed. Specifically, if the proposed development will involve an alternate final land use, the findings of this report may require revision and further assessment may be necessary.

15 Limitations

This report pertains to the site known as 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW at the time of the visual assessment and sample recovery. Should there be any variations in the site conditions since the abovementioned date (such as the importation of fill, chemical spillage, illegal dumping etc.), further assessment will be required. Should any suspect material be encountered, we recommend that this office be contacted immediately for further assessment. Neither Compaction & Soil Testing Services Pty Ltd, nor any other reputable firm can give unqualified warranties on the condition of the site and subsurface conditions.

While Compaction & Soil Testing Services Pty Ltd takes all reasonable due care and diligence, we offer no absolute warranty for the material below or between the locations sampled and investigated. Unless otherwise stated, Compaction & Soil Testing Services Pty Ltd has made no effort to verify the validity of the information gathered from external sources, and assumes it provides a reliable foundation for the assessment. Compaction & Soil Testing Services Pty Ltd does not assume any liability for site conditions unobserved or inaccessible at the time of the investigation.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described within this report, then all recommendations are to be reviewed. No other warranty, expressed or implied, is made or intended. Copyright of this report remains the property of Compaction & Soil Testing Services Pty Ltd.

Subject to the payment of all fees due for the investigation, the client alone shall have licence to use this report. This report shall not be reproduced except in full.

Should you have any queries about the methodology, findings, conclusions or recommendations of this Combined Phase 1 & 2 Environmental Site Assessment, please do not hesitate to contact our office on (02) 9675 7522.

16 References

Australian and New Zealand Environment Conservation Council & Agriculture, and Resource Management Council of Australia and New Zealand, 2000, *National Water Quality Management Strategy; Australian and New Zealand Guidelines for Fresh and Marine Water Quality*

Compaction & Soil Testing Services Pty Ltd, August 2014, Field Manual on Standard Operating Procedures for Environmental Sampling and Monitoring

Envirolab Services Pty Ltd, 18 May 2018, Certificate of Analysis 191419

Envirolab Services Pty Ltd, 22 May 2018, Certificate of Analysis 191179R01

Geo-Logix Pty Ltd, 11 March 2015 (2015a), *Phase 1 Environmental Site Assessment Report; 45-47 Tennyson Avenue, Turramurra NSW 2074*, (Report Reference: 1501013Rpt01FinalV01_11Mar15)

Geo-Logix Pty Ltd, 03 July 2015 (2015b), *Phase 1 Environmental Site Assessment Report; 105 Eastern Road, Turramurra NSW 2074*, (Report Reference: 1501070Rpt01DraftV00_3Jul15)

Leighton O'Brien Pty Ltd, 14 October 2016, Statistical Inventory Analysis; Site Report: Sep-16; AA0525_GDR2074 GDR Automotive Services, 105 Eastern Road Turramurra NSW 2074

Leighton O'Brien Pty Ltd, 11 April 2017, Statistical Inventory Analysis; Site Report: Mar-17; AA0525_GDR2074 GDR Automotive Services, 105 Eastern Road Turramurra NSW 2074

Leighton O'Brien Pty Ltd, 11 April 2017, Statistical Inventory Analysis; Tank Reports; AA0525_GDR2074 GDR Automotive Services, 105 Eastern Road Turramurra NSW 2074

Leighton O'Brien Pty Ltd, 09 October 2017, Statistical Inventory Analysis; Site Report: Sep-17; AA0525_GDR2074 GDR Automotive Services, 105 Eastern Road Turramurra NSW 2074

Leighton O'Brien Pty Ltd, 12 January 2018, Statistical Inventory Analysis; Tank Reports; AA0525_GDR2074 GDR Automotive Services, 105 Eastern Road Turramurra NSW 2074

Leighton O'Brien Pty Ltd, 11 April 2018, Statistical Inventory Analysis; Site Report: Mar-18; AA0525_GDR2074 GDR Automotive Services, 105 Eastern Road Turramurra NSW 2074

National Environment Protection Council, 2013, National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013)

National Health and Medical Research Council & National Resource Management Ministerial Council, 2016, *National Water Quality Management Strategy; Australian Drinking Water Guidelines 6, 2011,* Version 3.2, Updated February 2016

New South Wales Department of Environment, Climate Change & Water, 2009, Sydney 1:100,000 Soil Landscape Series Sheet 9130, Fourth Edition

New South Wales Department of Land and Water Conservation, 1997 Hornsby/Mona Vale Acid Sulfate Soil Risk Map, Edition Two

New South Wales Department of Mineral Resources, 1983, Sydney 1:100,000 Geological Series Sheet 9130, Edition 1

New South Wales Department of Primary Industries, Office of Water, 2018, *All Groundwater Map*, accessed from http://allwaterdata.water.nsw.gov.au/water.stm accessed 05 June 2018

New South Wales Environment Protection Authority, 1995, Sampling Design Guidelines

New South Wales Office of Environment & Heritage 2011, Guidelines for Consultants Reporting on Contaminated Sites

New South Wales Government, 1997, Contaminated Land Management Act 1997

New South Wales Government, 1997, Protection of the Environment Operations Act 1997

SGS Australia Pty Ltd, 17 May 2018, Analytical Report SE178970

SGS Australia Pty Ltd, 17 May 2018, Analytical Report SE178971

Compaction & Soil Testing Services Pty Ltd

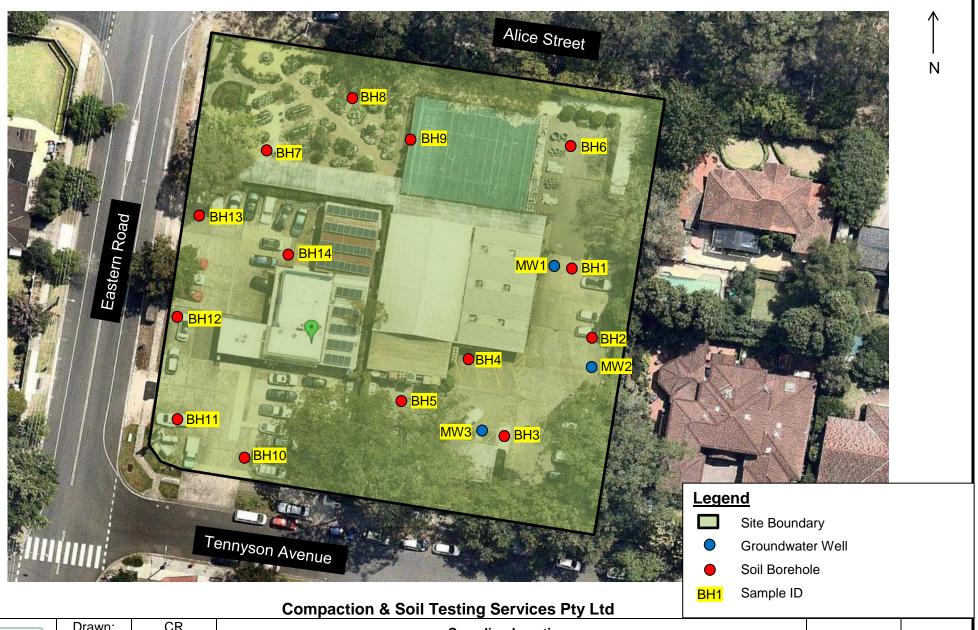
1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738

Phone: 02 9675 7522 Fax: 02 9675 7544

Email: office@csts.net.au Web: www.csts.net.au

Appendix A

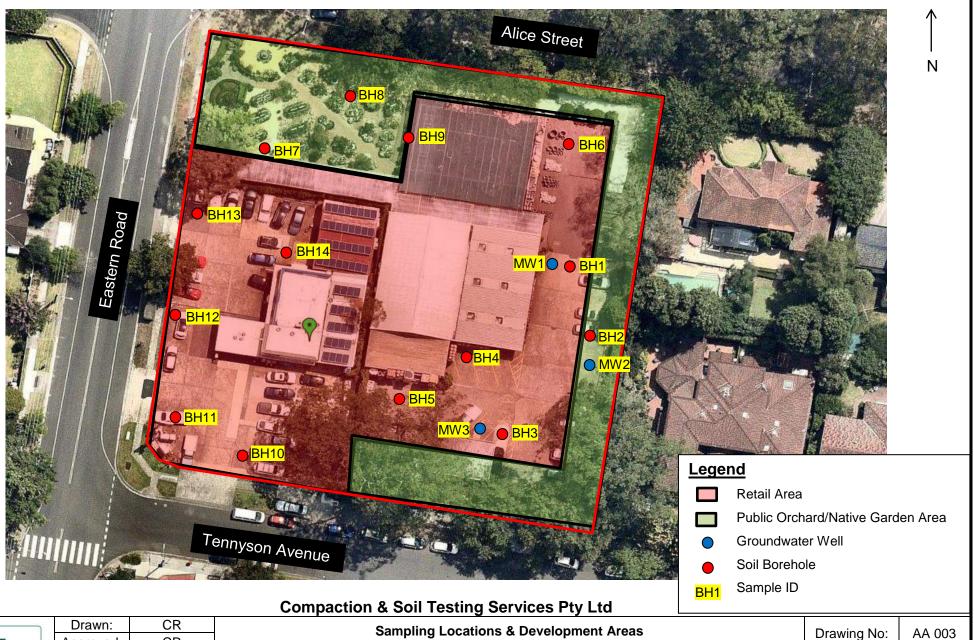
Site Drawings



Drawn:	CR
Approved:	CR
Date:	22/05/2018
Scale:	Not to scale

Site Location
45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW
Source: Nearmap; Imagery Date: 20/01/2018

Project Code: E1256



Drawn:	CR
Approved:	CR
Date:	22/05/2018
Scale:	Not to scale

Sampling Locations
45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

Source: Nearmap; Imagery Date: 20/01/2018

Drawing No:	AA 002
Project Code:	E1256

Drawn: CR
Approved: CR
Date: 22/05/2018
Scale: Not to scale

Sampling Locations & Development Areas
45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW
Source: Nearman: Imagent Date: 20/01/2018

Source: Nearmap; Imagery Date: 20/01/2018

Compaction & Soil Testing Services Pty Ltd

1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738

Phone: 02 9675 7522 Fax: 02 9675 7544

Email: office@csts.net.au Web: www.csts.net.au

Appendix B

Site Photographs

A: View of nursery taken from driveway, facing north

B: View of nursery area taken from near north-west corner, facing south

Drawn:	CR
Approved:	CR
Date:	28/05/2018
Scale:	N/A

Site Photographs					
45-47 Tennyson Avenue & 105 Eastern Road					
Turramurra NSW					

Drawing No:	AA004
Project Code:	E1256

C: View of nursery taken from Eastern Road, facing north-east

D: View of nursery taken from Alice Street, facing south-east

Drawn:	CR	
Approved:	CR	
Date:	28/05/2018	
Scale:	N/A	

Site Photographs						
45-47 Tennyson Avenue & 105 Eastern Road						
Turramurra NSW						

Drawing No:	AA005
Project Code:	E1256

E: View of nursery taken from Alice Street, facing south

F: View of shade-cloth covered café area within nursery, facing south-west

Drawn: CF	Cita Dhatagrapha	Drawing No:	AA006
Approved: CF	Site Photographs		77000
Date: 28/05/2	45-47 Tennyson Avenue & 105 Turramurra NSW		E40E0
Scale: N/A	Tuttattiutta NSVV	Project Code:	E1256

G: Photograph of disused UST within nursery carpark and monitoring well (MW1) in the background

H: Disused UST fill points within nursery carpark

Drawn:	CR	Cita Dhatagrapha
Approved:	CR	Site Photographs
Date:	28/05/2018	45-47 Tennyson Avenue & 105 Eastern Road Turramurra NSW
Scale:	N/A	Tulialliulia NSVV

Drawing No:	AA007
Project Code:	E1256

I: Groundwater Sampling Equipment in MW3

J: Soil Sampling - BH4

Drawn:	CR	Cita Dhatagrapha	Drawing No:	AA008
Approved:	CR	Site Photographs	Drawing No.	AAUUO
Date:	28/05/2018	45-47 Tennyson Avenue & 105 Eastern Road Turramurra NSW	Drainat Codo	E1056
Scale:	N/A	Turramuna NSW	Project Code:	E1256

K: Hand-Auger – BH7

L: Close-up of material condition - BH7

Drawn:	CR	Cita Dhatamanha
Approved:	CR	Site Photographs
Date:	28/05/2018	45-47 Tennyson Avenue & 105 Eastern Road Turramurra NSW
Scale:	N/A	Turramuna NSVV

Drawing No:	AA009
Project Code:	E1256

M: BH9 location

N: Material Condition - BH9

Drawn:	CR
Approved:	CR
Date:	28/05/2018
Scale:	N/A

Site Photographs
45-47 Tennyson Avenue & 105 Eastern Road
Turramurra NSW

Drawing No:	AA010
Project Code:	E1256

O: Service station site condition, taken from southern boundary facing north

P: Service station site condition, taken from southern boundary facing west

	С, П	T ~
Va		6,
_	No.	

Drawn:	CR	Cita Dhatagrapha	Drawing No:	AA011
Approved:	CR	Site Photographs	Drawing No.	AAUTT
Date:	28/05/2018	45-47 Tennyson Avenue & 105 Eastern Road Turramurra NSW	Project Code:	E1256
Scale:	N/A	rurramura NSVV	Project Code.	E1236

Q: Electrical transformer located within south-western corner of service station

R: BH11 location

Compaction & Soil Testing Services Pty Ltd

	n -		
		1	7
V.	N.	and the second	
			N-

Diawii.	OI V	Cita Dhatagrapha
Approved:	CR	Site Photographs
Date:	28/05/2018	45-47 Tennyson Avenue & 105 Eastern Road Turramurra NSW
Scale:	N/A	i uitaitiutta NSVV

Drawing No:	AA012
Project Code:	E1256

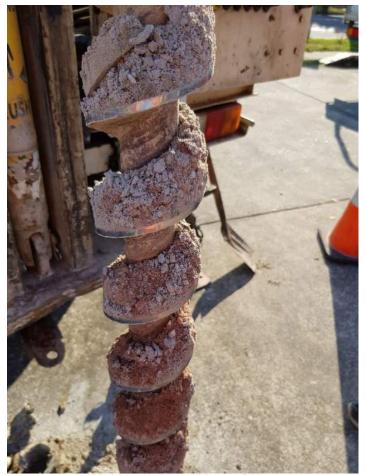
05/01/2015

S: Service station site condition, taken from Eastern Road, facing east

T: Service station site condition, taken from Eastern Road (northern driveway), facing east

Drawn:	CR	45-47 Tennyson Avenue & 105 Eastern Road	Drawing No:	AA013
Approved:	CR		Drawing No.	AAUIS
Date:	28/05/2018		Drainat Cada	E40E6
Scale:	N/A		Project Code:	E1256

U: Disused UST within service station site



V: Material condition - BH10

Drawn:	CR	Cita Dhata wanda
Approved:	CR	Site Photographs
Date:	28/05/2018	45-47 Tennyson Avenue & 105 Eastern Road Turramurra NSW
Scale:	N/A	runamuna NSW

Drawing No:	AA014
Project Code:	E1256

W: Material condition - BH11

X: Material condition - BH13

Diawii.	CK	Cita Dhata wan ha
Approved:	CR	Site Photographs
Date:	28/05/2018	45-47 Tennyson Avenue & 105 Eastern Road
Scale:	N/A	Turramurra NSW

Drawing No:	AA015
Project Code:	E1256

Y: Mechanical workshop condition

Z: Stockpiled used tyres

Photographs taken by CSTS Environmental Consultant on 08/05/2018

Compaction & Soil Testing Services Pty Ltd

Diawii.	CN	Cita Dhata ayan ba
Approved:	CR	Site Photographs
Date:	28/05/2018	45-47 Tennyson Avenue & 105 Eastern Road
Scale:	N/A	Turramurra NSW

Drawing No:

Project Code:

AA016

E1256

Compaction & Soil Testing Services Pty Ltd

1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738

Phone: 02 9675 7522 Fax: 02 9675 7544

Email: office@csts.net.au Web: www.csts.net.au

Appendix C

Borehole Logs

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

HOLE NO : BH01 FILE / JOB NO : E1256 SHEET: 1 OF 1

ANGLE FROM HORIZONTAL: 90° SURFACE ELEVATION: POSITION:

RIG TYPE: Drill Rig MOUNTING: Light Vehicle
DATE STARTED: 8/5/18 DATE COMPLETED: 8/5/18 CONTRACTOR: SDI DRILLER: DM

DATE LOGGED: 8/5/18 LOGGED BY : DM

			RILLIN		_		MATERIAL	_		I
ROGRE & CASING	WAIER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
				0.50m B1 BH1 0.5 S1		A A	CONCRETE 0.15m SILTY CLAY: Yellow Brown.			0.50: 0.0ppm
			Not Encountered	1.50m BH1 1.5	1.0 —		1.00m CLAY: Red Brown. with Ironstone banding. 1.50m CLAY: Mottled Grey.	_		1.50: 0.0ppm
				2.50m	2.0 —		2.50m			
				2.50m BH1 2.5	-		SANDSTONE / SHALE: Grey and Brown 2.70m BOREHOLE BH01 TERMINATED AT 2.70 m Refusal			2.50: 0.0ppm
					3.0					
ее Ехр	nlan	-4			4.0					

POSITION:

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

ANGLE FROM HORIZONTAL: 90° SURFACE ELEVATION:

HOLE NO : BH02

FILE / JOB NO : E1256

SHEET: 1 OF 1

RIG TYPE: Drill Rig MOUNTING: Light Vehicle
DATE STARTED: 8/5/18 DATE COMPLETED: 8/5/18 CONTRACTOR: SDI DRILLER: DM

DATE LOGGED: 8/5/18 LOGGED BY : DM

		RILLIN				MATERIAL			
& CASING WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	S DEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
			0.50m BH2 0.5	- 0.0 		CONCRETE 0.15m SILTY CLAY: Red Brown.			0.50: 0.0ppm
		Not Encountered	1.50m BH2 1.5			CLAY: Grey Brown.			1.50: 0.0ppm
_				- - 2.0 - -		2.00m BOREHOLE BH02 TERMINATED AT 2.00 m Target depth			
				 - - - 3.0					
				-					

HOLE NO : BH03 FILE / JOB NO : E1256 SHEET: 1 OF 1

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

POSITION:

ANGLE FROM HORIZONTAL: 90° SURFACE ELEVATION:

RIG TYPE: Drill Rig MOUNTING: Light Vehicle
DATE STARTED: 8/5/18 DATE COMPLETED: 8/5/18 CONTRACTOR: SDI DRILLER: DM

DATE LOGGED: 8/5/18 LOGGED BY : DM

	Di	RILLIN	IG			MATERIAL			
& CASING WATER	_		SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
			0.50m BH3 0.5	- 0.0		CONCRETE 5m SILTY CLAY: Red Brown.			0.50: 0.0ppm
		Not Encountered	1.50m BH3 1.5			CLAY: Grey Brown.			1.50: 0.0ppm
_				- 2.0 —	2.	0m BOREHOLE BH03 TERMINATED AT 2.00 m Target depth			
				3.0 —					
				-					

FILE / JOB NO : E1256 SHEET : 1 OF 1

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

POSITION :

SURFACE ELEVATION : ANGLE FROM HORIZONTAL: 90°

HOLE NO : BH04

RIG TYPE: Drill Rig MOUNTING: Light Vehicle CONTRACTOR: SDI DRILLER: DM

			RILLIN						MATERIAL			
ROG	RESS	ω NOi	TER	s & STS	Ê	O	TION -			₩ K	Z E Z	
& CASING	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTUR	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
-8					0.0 —	44	0		CONCRETE			
					_			0.15m	SILT: Brown. trace sand.			
					-							
				0.50m BH4 0.5	_	·		0.50m	OIL TVOLAY V. II.			0.50: 2.8ppm
					-				SILTY CLAY: Yellow Brown.			0.00. 2.0ррш
					-							
					-			0.90m				
					1.0 —				CLAY: Red Brown.			
					-							
					-							
			tered		-							
			Not Encountered	1.50m BH4 1.5								
			Not	ып 4 1.5	-							1.50: 3.8ppm
					-							
					-							
					-							
					2.0 -							
					-							
					-							
				2.50m	-							
				2.50m BH4 2.5								2.50: 0.5ppm
					-							
					-							
					-			3.00m				
_					3.0 —	//////		o.uum	BOREHOLE BH04 TERMINATED AT 3.00 m Target depth			
					-							
					-							
					-							
					-							
					-							
					-							
_	1-	natory	<u> </u>		J _{4.0} −					<u> </u>	<u> </u>	

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

FILE / JOB NO : E1256 SHEET: 1 OF 1

HOLE NO : BH05

POSITION: SURFACE ELEVATION: ANGLE FROM HORIZONTAL: 90°

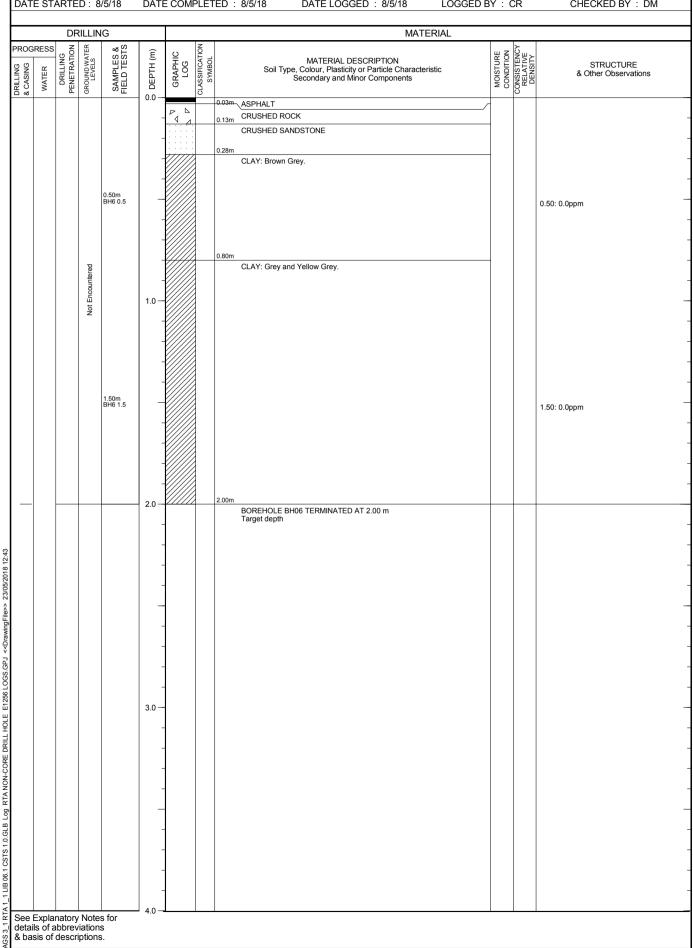
MOUNTING : Light Vehicle RIG TYPE: Drill Rig CONTRACTOR: SDI DRILLER: DM

DATE STARTED : 8/5/18 DATE COMPLETED : 8/5/18 CHECKED BY · DM DATE LOGGED · 8/5/18 LOGGED BY · DM

	_	~			-					
& CASING WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	, DEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTIC Soil Type, Colour, Plasticity or Particle Secondary and Minor Compo	N Characteristic nents	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
			0.50m BH5 0.5	- 0.0	7 4	CONCRETE 15m SILTY CLAY: Brown Grey.				0.50: 0.0ppm
		untered		1.0 —		80m CLAY: Brown Grey.				
		Not Encountered	1.50m BH5 1.5	2.0 —		00m CLAY: Red mottled Grey.				1.50: 0.0ppm
			2.50m BH5 2.5	-		80m CLAY SHALY: Grey.				2.50: 0.0ppm
				- 3.0	e/7	BOREHOLE BH05 TERMINATED AT 3.00 m Target depth				

FILE / JOB NO : E1256 SHEET: 1 OF 1

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW


ANGLE FROM HORIZONTAL: 90°

HOLE NO :

BH06

SURFACE ELEVATION: POSITION RIG TYPE: Drill Rig MOUNTING: Light Vehicle CONTRACTOR: SDI DRILLER: DM

DATE STARTED: 8/5/18 DATE COMPLETED: 8/5/18 DATE LOGGED: 8/5/18 LOGGED BY: CR CHECKED BY: DM

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

HOLE NO : BH07 FILE / JOB NO : E1256 SHEET: 1 OF 1

POSITION : SURFACE ELEVATION: ANGLE FROM HORIZONTAL: 90°

RIG TYPE: Hand Auger MOUNTING: CONTRACTOR: SDI DRILLER: JS

DATE STARTED: 8/5/18 DATE COMPLETED: 8/5/18 DATE LOGGED: 8/5/18 LOGGED BY: CR CHECKED BY: DM

		DRIL					-	MATERIAL	1	I.	
& CASING & CASING WATER	WAIER	PENETRATION GROUND WATER		SAMPLES & FIELD TESTS	S DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
_		L	Not Encountered	0.20m BH7 0.2	_			GRAVEL: Dark Grey. 0.20m BOREHOLE BH07 TERMINATED AT 0.20 m Refusal			0.20: 0.0ppm
					-						
					1.0 — - -						
					- - -						
					2.0 —						
					-						
					3.0 —						
See Expetails of basis	nlana	ton (Ni			4.0						

HOLE NO : BH08 FILE / JOB NO : E1256 SHEET: 1 OF 1

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW ANGLE FROM HORIZONTAL: 90° POSITION: SURFACE ELEVATION:

RIG TYPE: Hand Auger MOUNTING: CONTRACTOR: SDI DRILLER: JS

,,,,,,		ARTE				COMF					CHECKED BY: DM
			RILLIN					MATERIAL			
& CASING DOS	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	, DЕРТН (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
			countered	0.20m BH8 0.2	0.0 —			0.05m SAND: Yellow Brown. SILTY CLAY: Dark Brown Grey. with gravel.			0.20: 0.0ppm
_			Ž		- -			0.30m BOREHOLE BH08 TERMINATED AT 0.30 m Refusal			о.20. 0.0ррн
					-						
					-						
					1.0 —						
					-						
					-						
					-						
					2.0 —						
					-						
					-						
					-						
					3.0 —						
					-						
					_						
					-						
-e F	Expla	natory bbrev	Note	s for	4.0						

HOLE NO : BH09 FILE / JOB NO : E1256 SHEET: 1 OF 1

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

AGS 3_1 RTA 1_1 LIB 06.1 CSTS 1.0.GLB Log RTA NON-CORE DRILL HOLE E1256 LOGS.GPJ <<DrawingFile>> 23/05/2018 12:43

ANGLE FROM HORIZONTAL: 90°

POSITION : SURFACE ELEVATION: RIG TYPE: Hand Auger MOUNTING: CONTRACTOR: SDI DRILLER: JS

DATE COMPLETED: 8/5/18 DATE STARTED: 8/5/18 DATE LOGGED: 8/5/18 LOGGED BY: CR CHECKED BY: DM

DATE STARTED: 8/5/18	DATE COMPLE	TED: 8/5/18 DATE LOGGED: 8/5/18 LOGGE	DBY: CR	CHECKED BY: DM
DRILLING		MATERIAL		
BORLLING RCASING WATER SS DRILLING PENETRATION GROUNDWATER LEVELS SAMPLES & FIELD TESTS	GRAPHIC LOG CLASSIFICATION SYMBOL		MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
De January	0.0	CLAY: Dark Brown Red.		- :0: 0.0ppm -
		BOREHOLE BH09 TERMINATED AT 0.30 m Refusal		- - -
	1.0 —			- - -
				- - -
	-			-
	2.0 —			- - -
	- - -			- - -
	3.0 —			- - -
	-			- - -
	-			- - -
See Explanatory Notes for details of abbreviations & basis of descriptions.	4.0			S E1256 PH00 Page 1 OE 1

FILE / JOB NO : E1256 SHEET: 1 OF 1

HOLE NO : BH10

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

ANGLE FROM HORIZONTAL: 90° SURFACE ELEVATION: POSITION:

RIG TYPE: Drill Rig MOUNTING: Light Vehicle
DATE STARTED: 8/5/18 DATE COMPLETED: 8/5/18 CONTRACTOR: SDI DRILLER: DM

DATE LOGGED : 8/5/18 LOGGED BY : CR

	-	~	,,		7			_	
& CASING WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	O DEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
				- 0.0		CONCRETE 0.13m CLAY: Brown Grey.			0.13: Minor hydrocarbon odour noted
			0.50m B2 BH10 0.5 S2	-					0.50: 4.7ppm
		pa		1.0 —		0.90m CLAY: Light Grey White. trace sand.			0.90: Minor hydrocarbon odour noted
		Not Encountered	1.50m BH10 1.5	-					4.50: 0.1ppp
				-					1.50: 0.1ppm
				2.0 —		2.00m SANDSTONE: Light Grey			
			2.50m BH10 2.5	-		2.60m			2.50: 0.0ppm
				-		BOREHOLE BH10 TERMINATED AT 2.60 m Refusal			
				3.0 —					
				-					
				-					
				-					

FILE / JOB NO : E1256 PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW SHEET: 1 OF 1

HOLE NO :

BH11

SURFACE ELEVATION: ANGLE FROM HORIZONTAL: 90° POSITION

RIG TYPE: Drill Rig MOUNTING: Light Vehicle CONTRACTOR: SDI DRILLER: DM

DATE STARTED: 8/5/18 DATE COMPLETED: 8/5/18 DATE LOGGED: 8/5/18 LOGGED BY: CR CHECKED BY: DM DRILLING MATERIAL DRILLING PENETRATION PROGRESS GROUND WATER LEVELS SAMPLES & FIELD TESTS MOISTURE CONDITION CONSISTENCY RELATIVE DENSITY DEPTH (m) GRAPHIC LOG MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components STRUCTURE & Other Observations DRILLING & CASING 0.0 00 CONCRETE 0.18m SAND: Yellow Brown. 0.18: Hydrocarbon odour noted SILTY SAND: Dark Brown 0.33: Hydrocarbon odour noted CLAY: Grey White. 0.50m BH11 0.5 0.50: 66.5ppm 1.0 Not Encountered 1.50m BH11 1.5 1.50: 64.9ppm 1.80: Hydrocarbon odour noted SANDSTONE: Yellow White 2.0 GS 3_1 RTA 1_1 LIB 06.1 CSTS 1.0.GLB Log RTA NON-CORE DRILL HOLE E1256 LOGS.GPJ <<DrawingFile>> 23/05/2018 12:43 2.30m BH11 2.3 2.30: 44.2ppm BOREHOLE BH11 TERMINATED AT 2.45 m Refusal See Explanatory Notes for details of abbreviations & basis of descriptions.

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

SHEET: 1 OF 1

HOLE NO : BH12

FILE / JOB NO : E1256

ANGLE FROM HORIZONTAL: 90° SURFACE ELEVATION: POSITION:

RIG TYPE: Drill Rig MOUNTING: Light Vehicle
DATE STARTED: 8/5/18 DATE COMPLETED: 8/5/18 CONTRACTOR: SDI DRILLER: DM

DATE LOGGED : 8/5/18 LOGGED BY : CR

		RILL		1	19	MATERIAL		I.	
& CASING WATER	- 1 일 i	GROUND WATER	SAMPLES & FIELD TESTS	5 DEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
		Not Encountered	1.00m BH12 1.0	-		CONCRETE 0.13m 0.18m SAND: Yellow Brown. SILTY SAND: Dark Brown. 0.33m CLAY: Yellow Brown mottled Grey. 1.20m CLAY: Grey.			1.00: 0.0ppm
			2.00m BH12 2.0	2.0 -		2.00m			2.00: 0.0ppm
				-		Refusal			
				3.0 -					
See Expl				4.0 -	_				

FILE / JOB NO : E1256 SHEET: 1 OF 1

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

POSITION:

ANGLE FROM HORIZONTAL: 90° SURFACE ELEVATION:

HOLE NO : BH13

RIG TYPE: Drill Rig MOUNTING: Light Vehicle
DATE STARTED: 8/5/18 DATE COMPLETED: 8/5/18 CONTRACTOR: SDI DRILLER: DM

DATE LOGGED : 8/5/18 LOGGED BY : CR

DC -	DE -	-	ρ.	- (0		7			>	
& CASING O	WATER	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG CLASSIFICATION	MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
					0.0 —		CONCRETE 0.13m CLAY: Orange Brown.			
					-		CLAT. Orange blown.			
					-		0.50m			
					-		CLAY: Red Brown.			
					-					
			ered	4.00	-					
			Not Encountered	1.00m BH13 1.0	1.0 —					1.00: 0.0ppm
			Ž		-		1.20m CLAY: Grey.			
					-					
					-					
					-		1.80m			
				2.00m	-		SANDSTONE: Grey Yellow			
				2.00m BH13 2.0	2.0 —					2.00: 0.0ppm
_					-		BOREHOLE BH13 TERMINATED AT 2.20 m Target depth			
					-					
					-					
					-					
					3.0 —					
					3.0					
					-					
					-					
					-					
					-					
					-					

PROJECT : Environmental Site Assessment LOCATION : 45-47 Tennyson Avenue & 105 Eastern Road, Turramurra NSW

SHEET: 1 OF 1

HOLE NO : BH14 FILE / JOB NO : E1256

POSITION: SURFACE ELEVATION: ANGLE FROM HORIZONTAL: 90°

RIG TYPE: Drill Rig MOUNTING: Light Vehicle CONTRACTOR: SDI DRILLER: DM

DATE STARTED : 8/5/18 DATE COMPLETED : 8/5/18 CHECKED BY · DM DATE LOGGED · 8/5/18 LOGGED BY · CR

			ILLIN			l	1	MATERIAL	_	I.	T
& CASING SOL	WATER SSE	DRILLING PENETRATION	GROUND WATER LEVELS	SAMPLES & FIELD TESTS	DEPTH (m)	GRAPHIC LOG CLASSIFICATION SYMBOL		MATERIAL DESCRIPTION Soil Type, Colour, Plasticity or Particle Characteristic Secondary and Minor Components	MOISTURE	CONSISTENCY RELATIVE DENSITY	STRUCTURE & Other Observations
				0.50m BH14 0.5		\[\lambda \] \[\lambda \] \[\lambda \]	0.13m SILTY	CRETE SAND: Grey Brown. Orange Brown Grey.			0.25: Hydrocarbon odour noted 0.50: 14.4ppm
			untered		1.0 —		1.20m CLAY	: Red Orange Grey.			1.20: Mild hydrocarbon odour noted
			Not Encountered	1.50m BH14 1.5	- - - -						1.50: 12.3ppm
					2.0 —		2.10m SANE	STONE: Light Grey White			2.10: Very minor hydrocarbon odour noted
				2.50m BH14 2.5	-		2.80m				2.50: 1.1ppm
	•				3.0 —			HOLE BH14 TERMINATED AT 2.80 m al			
					- -						
					-						
See I	Explar	natorv	Note:	s for	4.0						

Compaction & Soil Testing Services Pty Ltd

1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738

Phone: 02 9675 7522 Fax: 02 9675 7544

Email: office@csts.net.au Web: www.csts.net.au

Appendix D

Groundwater Stabilisation Parameter Field Sheets

Groundwater Stabilisation Parameter Sheet

Client: W	VINSION L	ANG	ile	1			Job No.:		E12	56
→Project: (45-47 1	enn	4501	AVE, T	URRAMVRILA	† ,	Well No.:		mw	1_
Location:	PHASE 1	42	E5.	A			Height (m Al	ID) :		deep.
WELL FI		_								
→ Gatic	Cover				Standpi	pe		PVÇ F	Pipe	
WELL PL	JRGE DET	ΓAIL	.s	<u>'</u>						
Method:				Flow mic	O DUTGE	SWL - Be	efore:	1.4	ρM	
Date:			08/	05/2019	5	Time – Be	efore:	07:0	00	
Undertak	en By:		CA			Total Vol	Removed:	9	L.	
	Pump Type: blader PID (ppm): 1.8pm									
	G/\$AMPLI	NG			ENTS		<u></u>			
Time	Volume		WL	Temp		EC	Eh		00	Turbidity
(min)	(L)		m)	(°C)	рΗ	(µS/cm)	(mV)	(p	pm)	(NTUs)
`	ĺ	Ì		T	+/- 0.05	+/- 3%	+/- 10 mV		10%	+/- 10%
0	0	Ι.	ዌ	12.4	4.94	972	138	3.	16	_
5	_	_		16.9	5.02	956	72	2.5		
12	5	2.	7	17.8	S. 03	1038	60 59	1.0	3	
17	5.5	3.	2_	18.5	5.05	1022	59	0.9	98	
25	8		4	18.4	5.04	1054	69	0.	97	
							<u>'</u>			
	} 							1		
	<u> </u>	<u> </u>								
·								<u> </u>		
`								<u> </u>		
								_		
-						 		+-		
					<u> </u>			+		
		-				1				
	:	-		 		1				
	 	 								
										· · · · ·
				 						
· · · · · · · · · - · · · · · · · · · ·		 		+			-			-
-		 								<u> </u>
		-						<u> </u>		1
		\vdash					1			<u> </u>
		├-								
				i	+	 	1			
· · · · · · · · · · · · · · · · · · ·	-	 		+			 			
-		+		-						
		\vdash		+				 		
-		+					-			
Tested E	λν: ~ Ω			Remark	is: Very	<u>-</u> 	RED BROWN	leus	->	<u> </u>
1 esteu L	7. CK.			Koman	Very	· (Mais)	COLOURING			

Groundwater Stabilisation Parameter Sheet

	rinston L						Job No).:		EI	LSC
Project: f	HASE 1	€2 E	SA				Well N	o .:		MW	2
Location:	TURRA	MURRA	λ.				Height	(m Ak	ID):	5.6	n deep
WELL FI	VISH		•					•	,		
★ Gatic	Cover			SI	tandpip	e		F	VC F	ipe	
	IRGE DET	AILS			• •						
Method:			w Flow	MICCO	Ourae	SWL - B	lefore:		4	6 2	.6
Date:		O.	8/05/19	*	F - 0	Time – E	Before:		01:		
	Undertaken By: CR Total Vol Removed:										
Pump Ty		-	WOOGN			PID (ppn			0.	9m	
	3/SAMPLI				S	- 41		1		1,141	
Time	Volume	SWL		n		EC	E	h		00	Turbidity
(min)	(L)	(m)	(°C		pH	(µS/cm)	I	ıV)	1	om)	(NTUs)
(,,,,,	_/		<u> </u>		0.05	+/- 3%		0 mV		10%	+/- 10%
0	_	3.2	_		-	-		_		-	1
		-,-							!		
	TECHNI	CAL	DICELL		<u> </u>	ETH OUR	O RES	CV THE	יינו :		
						RE TO 6					
			WELLING		KE330	100 -	J	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	10								 		
									† -		
	ALTERA	(A111//	SADAD	scar a	c 014	Sect BALL	(GR 1)S	<i>u</i> D	 		
	1,010.41	B	2150	70	F. P.			···			
	50	FEICLE	505 14	Jan Ca	Que	אוזין פי	Q SAM	PLE	RECO	verec	<u> </u>
			<u> </u>			VIVI I V			1		
			1	 							
			 				1				
									†		
							"				
									1		
			<u> </u>								
		·									
									1		
<u> </u>		Ì									1
	:			<u> </u>					1		
			- 	***							
							_				
		1	<u>'</u>								
									1		
							+		•		— —
									:		
		<u> </u>	- 				- 		+		
Tested B	V:	l .	Rem	arks: ^	00604	tely t	10 4× 0	- A-	<u></u>	201210	(৪৩গ)
	, Ork				,0000	7 40	ベッカレビ	Co	COUR	11/4	(1)-1)

Groundwater Stabilisation Parameter Sheet

Client: V	VINSTON	LANCE	<u> </u>			Job No.:	E	256.
Project:	PHASE 1	SO E	54 54			Well No.:		<u>uz</u> uz
Location	TURRAM	<u>υ22 -</u>				Height (m Al		om deep.
WELL FI	VISH	UNGE				Troight (HT)	107. 3.5	,,,,, , , , , , , , , , , , , , , , ,
★ Gatic			-	Standpi	oe		VC Pipe	
	JRGE DET	AILS		,				
Method:			u flow m	renovele	SWL – Be	efore:	3.lm.	
Date:		09	105/201	8	Time - Be	efore:	08:40	
Undertak	en Bv:		R			Removed:	8.54	
Pump Ty			ADOGR		PID (ppm) :	0,0	
PURGING	G/SAMPLI			ENTS	· \1			
Time	Volume	SWL			EC	Eh	DO	Turbidity
(min)	(L)	(m)	(°C)	pН	(µS/cm)	(mV)	· (ppm)	(NTUs)
	-	~		+/- 0.05	+/- 3%	+/- 10 mV		+/- 10%
0	1	3.1	20.2	4.81	412	64	2.6%	
5	2	-	20.7	4.71	427	59	1.53	
10	<u>3</u>	4.3	21.2	4.63	421	52	0.95	
15	5	4.6	21.0	4.57	413	45	1.02	
20	7	4.8	21.3	4.57	403	49	1.10	
25.	8.5		20.7	4.59	409	48	1.05	<u> </u>
							ļ	
		ļ	, ,				1	
	<u> </u>							
	İ							
	<u> </u>		1					
								
								1
		ļ				-	1	1
ļ		-	1			 		
		-	-			1		
			<u> </u>		1	+		
						 	1	
				-	-		-	
-		-	1			 		
	<u> </u>	1				-		
		1	1		-	 		
		 				1		
							+	1
						+		
						+		1
		 				+	 	
Toetad D	Sur (CA)	I	Demort	(e [.]				
Tested B	y. UZ		Leman	ra Drich	ny turg	NO.		

Compaction & Soil Testing Services Pty Ltd

1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738

Phone: 02 9675 7522 Fax: 02 9675 7544

Email: office@csts.net.au Web: www.csts.net.au

Appendix E

Equipment Calibration Certificates

RENTALS

Equipment Certification Report - TPS 90FLMV Water Quality Meter

This Water Quality Meter has been performance checked and calibrated as follows:

Sensor	Concentration	i Spa	in 1	Span	2	Traceability Lot #	Pass?
рН р	pH 7.00 / pH 4.0	00 7.0	o pH	4.00	рН	315066/312725	
Conductivity 1	12.88mS/cm	0.00	mS/cm	12.88	mS/cm	316592	
TDS	36 ppk	0	ppk	36	ppk	313394	
Dissolved Oxygen	Sodium Sulphir / Air	e 0.0	ppm n Sulphite	8 75 Saturation	ppm on in Air	5656(ss) 306207(DI)	Ø
heck only							
Redox (ORP) *	Electrode operability tes		10%	233	mV	314147(A) 315895(B) ogen Electrode), add 199r	
	000201)) 	☐ Electi	erature _ rodes Cle	aned and checked	
lease check that	aning / service	repair charge i	ed and that a may be appli	all items are ded to any und	deaned a	nd decontaminated before amaged items. Items r	ore return. not returne
elease check that ininimum \$30 clear illed for at the full sent Re	aning / service ill replacement eturned tem	repair charge (cost.	check/Battery ing cap, 5m emperature k SI5739 sensor with wetting to 12V DC 20	status: Section and the section with wetting cap, 5m oomA	5m ng cap, 5r	amaged items. Items r	ore return. not returne
Please check that ininimum \$30 clea illed for at the ful Sent Re	aning / service ill replacement eturned tem	A repair charge is cost. LMV Unit. Ops of the cost with wetted activity/TDS/To olved oxygen Yox (ORP) sensor er supply 240V uction Manual isk Guide inge with storage y Case	check/Battery ing cap, 5m emperature k SI5739 sensor with wetting to 12V DC 20	status: Section and the section with wetting cap, 5m oomA	5m ng cap, 5r	amaged items. Items r	ore return. not returne
lease check that ininimum \$30 clear illed for at the full sent. Re	aning / service ill replacement eturned tem	A repair charge is cost. LMV Unit. Ops of the cost with wetted activity/TDS/To olved oxygen Yox (ORP) sensor er supply 240V uction Manual isk Guide inge with storage y Case	check/Battery ing cap, 5m emperature k SI5739 sensor with wetting to 12V DC 20 e solution for ectrical safety	status: Section and the section with wetting cap, 5m oomA	5m ng cap, 5r	amaged items. Items r	ore return. not returne
lease check that ininimum \$30 clear illed for at the full sent. Resident illed for at	aning / service ill replacement turned terr 90F PH s Con Diss Red Pow Instr	A repair charge is cost. LMV Unit. Ops of the cost with wetted activity/TDS/To olved oxygen Yox (ORP) sensor er supply 240V uction Manual isk Guide inge with storage y Case	check/Battery ing cap, 5m emperature k SI5739 sensor with wetting to 12V DC 20 e solution for ectrical safety	v status: 2 (=10 sensor, or with wetting cap, 5m 00mA pH and ORF	5m ng cap, 5r	amaged items. Items r	ore return.
lease check that ininimum \$30 clear illed for at the full sent. Record illed for at th	aning / service ill replacement turned terr 90F Pow Con Diss Red Pow Instr	A repair charge is cost. LMV Unit. Ops of the cost with wetted activity/TDS/To olved oxygen Yox (ORP) sensor er supply 240V uction Manual isk Guide inge with storage y Case	check/Battery ing cap, 5m emperature k SI5739 sens or with wetting to 12V DC 20 e solution for ectrical safety Return	status: 2 K=10 sensor, or with wetting cap, 5m 00mA pH and ORF y (tag must b	5m ng cap, 5r	amaged items. Items r	ore return.

Phone: (Free Call) 1300 735 295 Fax: (Free Call) 1800 675 123 Email: RentalsAU@Thermofisher.com

Melbourne Branch Sydney Branch Level 1, 4 Talawera Road, North Ryde 2113 Beringarra Ave Matsau 15007 Bouth Australia 5007

Scoresby 3179 Brisbase Branch Level 1, 4 Talawera Road, North Ryde 2113 Beringarra Ave Matsau 4008 Matsau 944 6090

Melbourne Branch Level 1, 4 Talawera Road, North Ryde 2113 Beringarra Ave Matsau 944 6090

Melbourne Branch Level 1, 4 Talawera Road, North Ryde 2113 Beringarra Ave Matsau 944 6090

RENTALS

Equipment Report - MiniRAE 3000 PID

This Gas Meter has been performance checked and calibrated as follows:

Compound

		Concentration	The state of the s	Span	Traceability Lot #	Pass?
10.6 eV	Isobutylene	100 ppm	O ppm	100 ppm	339261	
Alarm Limits		В	ump Test			
High	(00 ppm		Date	Target Gas	Reading	Pass?
Low	50 ppm	5	07/05/2018	100 ppm	99.4 ppm	0
Spare battery	st complete status (Min 5.5 volts) ety Tag attached (AS)		☑ Data cleare ☑ Filters chec		

Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$30 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost.

Sent Ret de	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	to PID) r(s) Qty /1250mA narger chind foam on the lid of case " chind foam on the lid of case " ry Compartment with batteries cilter Guide Laminated & tubing (optional)
Date: 07/95/2	1018	
Signed:		

TFS Reference	CS00880/	Return Date: / /
Customer Reference		Return Time:
Equipment ID	PID3000- / 7	Condition on return:
Equipment Serial No.	592-914209	

"We do more than give you great equipment... We give you great solutions!"

Phone: (Free Cali) 1300 735 295 Fax: (Free Cali) 1800 675 123 Email: RentalsAU@Thermofisher.com

Melbourne Branch
5 Caribbean Drive,
5 Caribbean D

G0555

RENTALS

Equipment Report - Heron Interface Meter

This Meter has been performance checked / calibrated* as follows: Pass? Cleaned/Tested Probe V Tape/Reel Performance Test & Battery Voltage Check (7v) 8.0v minimum Checked by:__ Signed: Please check that the following items are received and that all items are cleaned and decontaminated before return. A minimum \$20 cleaning / service / repair charge may be applied to any unclean or damaged items. Items not returned will be billed for at the full replacement cost. Received Returned Sent Item Operations Check OK Spare 9V Battery Operating Guide Probe Cleaning Brush Decon Carry Bag / Box Processors Signature/ Initials CS00880 Quote Reference Condition on return Customer Ref Equipment ID HOIL GO DTGOSK Equipment serial no. 26346

	"We do more than give you great equipment We give you great solutions!"									
Phone: (Free	e Call) 1300 735 295	Fax: (Free Call) 1800 675 12	3	Email: RentalsAU@Thermofisher.com						
Melbourne Branch 5 Caribbean Drive Scoresby 3179	Sydney Branch Level 1, 4 Talevera Road, North Ryde 2113	Adelaide Branch 27 Beulah Road, Norwood. South Australia 5067	Brisbane Branch Unit 2/5 Rose St Newstand 4606	Perth Branch 121 Beringarra Ave Malaga WA 6090						
Iceus E		Con 11		COEAS						

Return Date Return Time

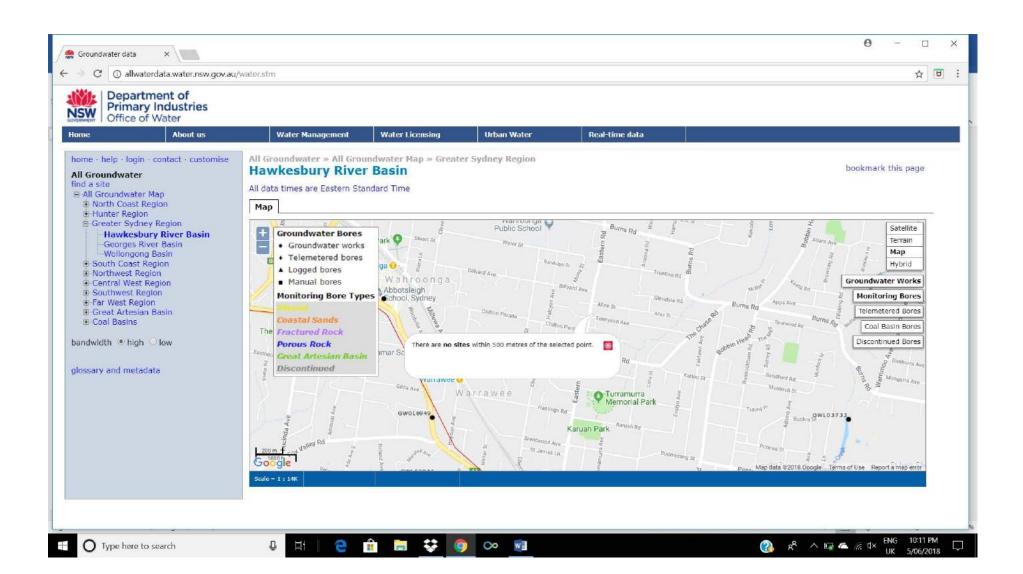
Equipment Report - Micropurge Kit (MP15)

This system	has been	performance	checked	as follows:
-------------	----------	-------------	---------	-------------

Sample I	Pro Pump				
□ Comp	onents Clean	ed / checked		□ Ops check	
□ MP15	Controller			☐ Included in kit	☐ Not included in kit
□ Comp	onents Clean	ed / checked		□ Ops check	The included in Kit
□ Battery	check - On/	Off		□ Flow response	
Date:	1	518		Checked by: Dave 0	'New D
Please ch	neck that the	o oleannia /	SCIVICE /	ceived and that all items are cle repair charge may be applied to I replacement cost.	eaned and decontaminated before any unclean or damaged items.
Sent	Received	Returned	Item		
Process	sors Signatur	e/ Initials	CO2 cy Gas reg Tube co Quick S MP15 L Sample Bladder Flow ce Stainles Spare C Gas Cy	Start Guide Jacks Guide + Pump operating Pro Stainless Steel Pump ID: X 2 III ID: FC 500 -2 (as Steel Hanger Cable, Clamp a CO2 Cylinders, quantity: 1 Linder CO2 - Size C ID: 104	Instructions 3 S f 6 f 5 C Bracket 30 m
EE Quote	e Reference	CS00880	7/	Condition on return	,
	ustomer Ref	- 30000		Condition on return	
	quipment ID	QMP15	WA		
	nt serial no.	gry 13	ш17		
	Return Date	1	1		
	Return Time				

Phone: (Fre	"We do more than e Call) 1300 735 295	n give you great equipment W	e give you great solut	ions!"
Melbourne Branch 6 Caribbean Drive, Scoreaby 3179	Sydney Branch Level 1, 4 Talawore Road, North Ryde 2113	Fax: (Free Call) 1800 675 1 Adelaide Branch 27 Beulah Road, Norwood, South Australia 5057	Ensbarie Branch Unit 2/5 Ross St Newstand 4005	nail: RentaisAU@Thermofisher.com
Issue 3		Oct 09	1 1400001000 4000	Malaga WA 6090 G0554

Compaction & Soil Testing Services Pty Ltd


1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738

Phone: 02 9675 7522 Fax: 02 9675 7544

Email: office@csts.net.au Web: www.csts.net.au

Appendix F

Supporting Documentation

List of NSW Contaminated Sites Notified to EPA as of 16 April 2018

Background

A strategy to systematically assess, prioritise and respond to notifications under Section 60 of the *Contaminated Land Management Act 1997* (CLM Act) has been developed by the EPA. This strategy acknowledges the EPA's obligations to make information available to the public under *Government Information (Public Access) Act 2009*.

When a site is notified to the EPA, it may be accompanied by detailed site reports where the owner has been proactive in addressing the contamination and its source. However, often there is minimal information on the nature or extent of the contamination.

For some notifications, the information indicates the contamination is securely immobilised within the site, such as under a building or carpark, and is not currently causing any offsite consequences to the community or environment. Such sites would still need to be cleaned up, but this could be done in conjunction with any subsequent building or redevelopment of the land. These sites may not require intervention under the CLM Act, but could be dealt with through the planning and development consent process.

Where indications are that the nominated site is causing actual harm to the environment or an unacceptable offsite impact (i.e. it is a "significantly contaminated site"), the EPA would apply the regulatory provisions of the CLM Act to have the responsible polluter and/or landowner investigate and remediate the site.

As such, the sites notified to the EPA and presented in the following table are at various stages of the assessment and/or remediation process. Understanding the nature of the underlying contamination, its implications and implementing a remediation program where required, can take a considerable period of time. The tables provide an indication, in relation to each nominated site, as to the management status of that particular site. Further detailed information may be available from the EPA or the responsible landowner.

The following questions and answers may assist those interested in this issue:

Frequently asked questions

What is the difference between the "List of NSW Contaminated Sites Notified to the EPA" and the "Contaminated Land: Record of Notices"?

A site will be on the <u>Contaminated Land: Record of Notices</u> only if the EPA has issued a regulatory notice in relation to the site under the <u>Contaminated Land Management Act 1997</u>.

The sites appearing on this "List of NSW contaminated sites notified to the EPA" indicate that the notifiers consider that the sites are contaminated and warrant reporting to the EPA. However, the contamination may or may not be significant enough to warrant regulation by the EPA. The EPA needs to review and, if necessary, obtain more information before it can make a determination as to whether the site warrants regulation.

Why my site appears on the list?

Your site appears on the list because of one or more of the following reasons:

- The site owner and/or the person partly or fully responsible for causing the contamination notified to the EPA about the contamination under Section 60 of the Contaminated Land Management Act 1997. In other words, the site owner or the "polluter" believes the site is contaminated.
- The EPA has been notified via other means and is satisfied that the site is or was contaminated.

Does the list contain all contaminated sites in NSW?

No. The list only contains contaminated sites that the EPA is aware of, with regard to its regulatory role under the CLM Act. An absence of a site from the list does not necessarily imply the site is not contaminated.

The EPA relies upon responsible parties to notify contaminated sites.

How are these notified contaminated sites managed by the EPA?

There are different ways that the EPA manages these notified contaminated sites. First, an initial assessment is carried out by the EPA. At the completion of the initial assessment, the EPA may take one or more than one of the following management approaches:

- The contamination warrants the EPA's direct regulatory intervention either under the Contaminated Land Management Act 1997 or the Protection of the Environment Operations Act 1997 (POEO Act), or both. Information about current or past regulatory action on this site can be found on EPA website.
- The contamination with respect to the current use or approved use of the site, as defined under the *Contaminated Land Management Act 1997*, is not significant enough that it warrants EPA regulation.
- The contamination does not require EPA regulation and can be managed by a planning approval process.
- The contamination is related to an operational Underground Petroleum Storage System, such as a service station or fuel depot. The contamination may be managed under the POEO Act and the Protection of the Environment Operation (Underground Petroleum Storage Systems) Regulation 2014.
- The contamination is being managed under a specifically tailored program operated by another agency (for example t
- he Department of Industry and Investment's Derelict Mines Program).

I am the owner of a site that appears on the list. What should I do?

First of all, you should ensure the current use of the site is compatible with the site contamination. Secondly, if the site is the subject of EPA regulation, make sure you comply with the regulatory requirements, and you have considered your obligations to notify other parties who may be affected.

If you have any concerns, contact us and we may be able to offer you general advice, or direct you to accredited professionals who can assist with specific issues.

I am a prospective buyer of a site that appears on the list. What should I do?

You should seek advice from the vendor to put the contamination issue into perspective. You may need to seek independent expert advice.

The information provided in the list is meant to be indicative only, and a starting point for your own assessment. Site contamination as a legacy of past site uses is not uncommon,

particularly in an urbanised environment. If the contamination on a site is properly remediated or managed, it may not materially impact upon the intended future use of the site. However, each site needs to be considered in context.

List of NSW Contaminated Sites Notified to the EPA

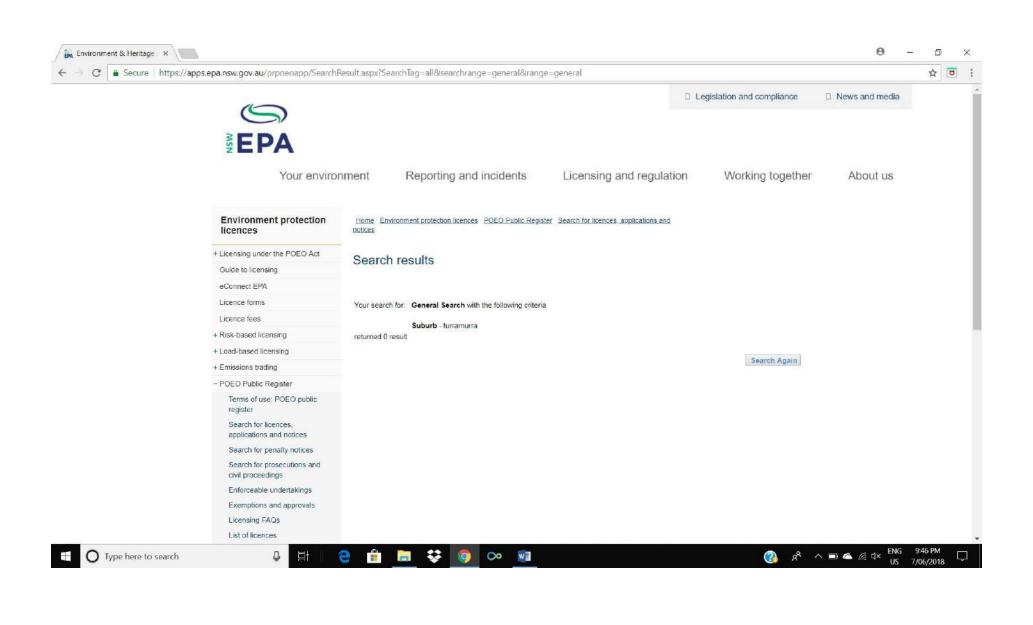
Disclaimer

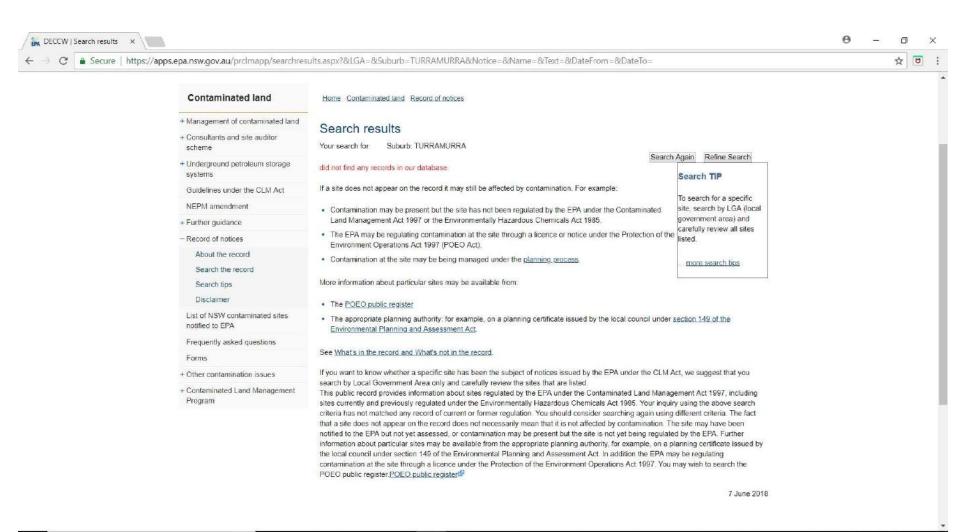
The EPA has taken all reasonable care to ensure that the information in the list of contaminated sites notified to the EPA (the list) is complete and correct. The EPA does not, however, warrant or represent that the list is free from errors or omissions or that it is exhaustive.

The EPA may, without notice, change any or all of the information in the list at any time.

You should obtain independent advice before you make any decision based on the information in the list.

The list is made available on the understanding that the EPA, its servants and agents, to the extent permitted by law, accept no responsibility for any damage, cost, loss or expense incurred by you as a result of:


- 1. any information in the list; or
- 2. any error, omission or misrepresentation in the list; or
- 3. any malfunction or failure to function of the list;
- 4. without limiting (2) or (3) above, any delay, failure or error in recording, displaying or updating information.


Site Status	Explanation
Under assessment	The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or <i>Protection of the Environment Operations Act 1997</i> . Alternatively, the EPA may require information via a notice issued under s77 of the <i>Contaminated Land Management Act 1997</i> or issue a Preliminary Investigation Order.
Regulation under CLM Act not required	The EPA has completed an assessment of the contamination and decided that regulation under the <i>Contaminated Land Management Act 1997</i> is not required.
Regulation being finalised	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> . A regulatory approach is being finalised.

Ongoing maintenance required to manage residual contamination (CLM Act)	The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record.
Contamination was addressed via the planning process (EP&A Act)	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the <i>Environmental Planning and Assessment Act 1979</i> (EP&A Act).
Contamination formerly regulated under the POEO Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the <i>Protection of the Environment Operations Act 1997</i> (POEO Act).
Contamination formerly regulated under the CLM Act	The EPA has determined that the contamination is no longer significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> (CLM Act). The contamination was addressed under the CLM Act.
Contamination being managed via the planning process (EP&A Act)	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the <i>Environmental Planning and Assessment Act 1979</i> (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment.
Contamination currently regulated under POEO Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. Management of the contamination is regulated under the <i>Protection of the Environment Operations Act 1997</i> (POEO Act). The EPA's regulatory actions under the POEO Act are available on the <u>POEO public register</u> .
Contamination currently regulated under CLM Act	The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's <u>Contaminated Land Public Record</u> .

Suburb	Site Name	Address	Contamination Activity Type	EPA Management Class	Latitude	Longitude	
	Minmet			Contamination currently			
TOMAGO		25 School DRIVE	Metal Industry	-	-32.8301553	151.7300603	
	Balcombe Sweat Furnace			1 -			
TOMAGO		26 Laverick AVENUE	Metal Industry	<u> </u>	-32.82557395	151.7056416	
	Log Cabin Service Station (United			Under assessment			
TOMERONG	Petroleum)	D1300 Princes HIGHWAY	Service Station		-35.01820959	150.5779687	
	7-Eleven (Former Mobil) Service			Regulation under CLM Act not			
TOONGABBIE	Station Toongabbie	3 Metella ROAD	Service Station	required	-33.78692357	150.9462837	
	Caltex Service Station			Regulation under CLM Act not			
TOORMINA		2 Minorca PLACE	Service Station	required	-30.35229568	153.0906606	
	Coles XP (Former Mobil) Toronto	133 - 137 Cary (Cnr Thorne St)		Regulation under CLM Act not			
TORONTO	Service Station	STREET	Service Station	required	-33.01187681	151.5930879	
	BP Toronto Service Station	132 Cary (Cnr Donnelly Ave)		Regulation under CLM Act not			
TORONTO		STREET	Service Station	required	-33.01144673	151.5937863	
	Toronto Hotel			Regulation under CLM Act not			
TORONTO		74 Victory PARADE	Unclassified	required	-33.01214835	151.5958127	
	Caltex Service Station	·		'			
TORONTO		147 Cary STREET	Service Station	1	-33.01288007	151.5928388	
	Former Shell Toukley Autoport			+ '	0.022000.		
TOUKLEY	, , , , , , , , , , , , , , , , , , ,	211 Main ROAD	Service Station	1	-33 26383791	151 5386268	
	Independent (Mobil) Toukley		Jervice station	<u> </u>	33.23330732	131.333320	
TOUKLEY	Service Station	287 Main ROAD	Service Station	1 -	-33 26469166	151 5462414	
TOUREET	Caltex Service Station	(Mitchell Hwy) 76 Narromine	Service Station	 '	33.20403100	131.3402414	
TRANGIE	Cartex Service Station	STREET	Service Station	1	-32 03234676	147 985164	
TRANGIL	BP Tuggerah	STREET	Service Station	'	-32.03234070	147.983104	
TUCCEDALL	The ruggeran	100 Pacific HIGHWAY	Coming Station	Contamination currently regulated under POEO Act			
TUGGERAH	Farman Caltan Danat	100 Pacific HighWAY	Service Station	<u> </u>	-33.305/816/	151.4198083	
T. 10.45 A. 5.10.45 A	Former Caltex Depot	AFO All CTREET		1 -	25 7702 4004	447.00074.00	
TUMBARUMBA	5 7 1:1 1611	150 Albury STREET	Other Petroleum		-35.//024081	147.9927182	
	Former Tumbi Landfill			"			
TUMBI UMBI		140 Bellevue ROAD	Landfill	<u> </u>	-33.3993472	151.456471	
	CSR Blue Dam			Regulation being finalised			
TUMUT		Jepsen AVENUE	Other Industry		-35.30098337	148.1958308	
	CSR Railway cutting			Regulation being finalised			
TUMUT		Jepsen AVENUE	Unclassified		-35.30422002	148.1942579	
	Former Telstra Depot			Regulation under CLM Act not			
TUMUT		22-26 Carey STREET	Other Industry	required	-35.29873079	148.2191122	
	Tern Inn Restaurant (abandoned			Regulation under CLM Act not			
TUROSS HEAD	UPSS)	2 Trafalgar ROAD	Service Station	required	-36.05871059	150.1308443	
	7-Eleven (former Mobil) Service			Regulation under CLM Act not			
TURRAMURRA	Station Turramurra	1408 Pacific HIGHWAY	Service Station	required	-33.73326389	151.1264194	
	Woolworths (Former Mobil)			Regulation under CLM Act not			
TURRAMURRA	Service Station	1233 Pacific HIGHWAY	Service Station	required)	-33.73317594	151.1313195	
	Tulloch Australia Pty Limited			Contamination currently			
TURRELLA	<u>'</u>	61 Turrella STREET	Chemical Industry	1	-33.92857213	151.1475387	
	Former Mobil Quix Service Station		<u> </u>	<u> </u>		- 70.	
TWEED HEADS		60 Pacific HIGHWAY	Service Station	required	-28.20143775	153.5445381	

List current as of 16 April 2018

Site Report. © Leighton O'Brien Pty Ltd

Report Date: 14-Oct-16 Report Period: Sep-16

Statistical Inventory Analysis Leighton O'Brien Pty Ltd PO Box 5018 Camberwell 3124 Ph 03 9804 2200

LEIGHTON O'BRIEN

				Trend					
		Period	Result	(lpd)	Trend %	T'put	MDLR	DDs	PDs
AA0525_GDR2074 GDR Automotive Service Unleaded		Apr-16	No Data P	rocessed					
105 Eastern Rd	Tank 1	May-16	May-16 No Data Processed						
Turramurra NSW 2074		Jun-16	No Data P	rocessed					
	Pass	Jul-16	No Data P	rocessed					
		11 0	No Data P						
		Sep-16	PASS	-1.4	-0.13%	33653	5.6	1	3
Site Comments: Apart from the two data									
discrepancies, the results are good.	PULP 98		Out of Sys						
	Tank 2		Out of Sys						
			Out of Sys						
	Pass	11	Out of Sys						
			Out of Sys						
	•	Sep-16	PASS	-18.1	-1.42%	38405	8.8	0	0
	I=	1							
	Diesel		Out of System						
	Tank 3		Out of Sys						
			Out of System						
Legend	Pass		Out of Sys						
Inconclusive			Out of Sys		4.450/	00504			0
See Report for Details		Sep-16	PASS	-11.8	-1.45%	23584	3.9	1	2
Fail									
Trend (lpd) Period Trend (Litres per Day)									
Trend (ipd) Period Trend (Littles per Day) Trend % Period Trend (%)									
MDLR Minimum Detectable Leak Rate									
PDs Poor Dip Count									
DDs Data Discrepancy Count									
* Tank Calibration Adjustment									
rank Ganbration Adjustment									

Site Report. © Leighton O'Brien Pty Ltd

Report Date: 11-Apr-17 Report Period: Mar-17

Statistical Inventory Analysis Leighton O'Brien Pty Ltd PO Box 5018 Camberwell 3124 Ph 03 9804 2200

LEIGHTON O'BRIEN

				Trend					
		Period	Result	(lpd)	Trend %	T'put	MDLR	DDs	PDs
AA0525_GDR2074 GDR Automotive Service Unleaded		Oct-16	PASS	2.5	0.23%	32742	6	0	1
105 Eastern Rd	Tank 1	Nov-16	PASS	4.5	0.40%	33563	7.8	0	2
Turramurra NSW 2074		Dec-16	PASS	-2	-0.20%	32514	5.3	1	1
	Pass	Jan-17	PASS	17.1	1.95%	27170	5	1	2
		Feb-17	PASS	5.7	0.56%	28548	7.7	0	0
		Mar-17	PASS	-4.3	-0.41%	32207	5	1	0
Site Comments: The result for PULP 98									
tank 2 is a fail and should be investigated	PULP 98	Oct-16	PASS	-2.1	-0.17%	37893	9.5	1	1
for losses. The other tanks are reporting	Tank 2	Nov-16	PASS	5.2	0.40%	39601	5.5	1	3
good results. Both the data discrepancies		Dec-16	PASS	5.8	0.47%	38003	3.8	2	2
should also be investigated.	Fail	Jan-17	PASS	10.3	1.03%	30988	5	0	1
		Feb-17	PASS	11.1	0.83%	36334	4.7	1	0
	•	Mar-17	FAIL	-21	-1.67%	40331	5.4	0	0
To Tank Report	Diesel	Oct-16	PASS	4.4	0.53%	24749	4.1	1	0
	Tank 3	Nov-16	PASS	7.4	0.81%	26337	3.9	1	2
		Dec-16	PASS	4.6	0.59%	24435	3.5	1	1
Legend	Pass	Jan-17	PASS	6.1	0.99%	18967	2.7	1	1
Inconclusive		Feb-17	PASS	12.3	1.35%	25546	3.4	0	1
See Report for Details	Ĺ	Mar-17	PASS	3.4	0.39%	26978	2.2	1	1
Fail									
Trend (lpd) Period Trend (Litres per Day)									
Trend % Period Trend (%)									
MDLR Minimum Detectable Leak Rate									
PDs Poor Dip Count									
DDs Data Discrepancy Count * Tank Calibration Adjustment									

Site Report. © Leighton O'Brien Pty Ltd

Report Date: 09-Oct-17 Report Period: Sep-17

DDs

Data Discrepancy Count
Tank Calibration Adjustment

Statistical Inventory Analysis Leighton O'Brien Pty Ltd PO Box 5018 Camberwell 3124 Ph 03 9804 2200

LEIGHTON O'BRIEN

				Trend					
		Period	Result	(lpd)	Trend %	T'put	MDLR	DDs	PDs
AA0525_GDR2074 GDR Automotive Serv	vice Unleaded	Apr-17	PASS	0.8	0.11%	22682	6.8	0	1
105 Eastern Rd	Tank 1	May-17	PASS	-4	-0.43%	28667	5.5	0	0
Turramurra NSW 2074		Jun-17	PASS	-6.5	-0.82%	23745	5.9	0	1
	Pass	Jul-17	PASS	-11.8	-1.48%	24587	5.3	0	2
		Aug-17	PASS	-1.4	-0.15%	29386	4.3	0	2
		Sep-17	PASS	-4.8	-0.52%	27396	5.1	0	1
Site Comments: A good set of results.									
-	PULP 98	Apr-17	PASS	0.9	0.10%	28742	7.2	0	0
	Tank 2	May-17	PASS	-3	-0.25%	37952	4.4	0	1
		Jun-17	PASS	-11.9	-1.11%	29964	4.2	0	0
	Pass	Jul-17	PASS	-14.1	-1.39%	32440	6.3	0	0
		Aug-17	PASS	-6	-0.51%	36076	5.2	0	0
		Sep-17	PASS	-5.8	-0.50%	34739	5.7	0	0
	Diesel	Apr-17	PASS	3.2	0.46%	19875	2.8	0	1
	Tank 3	May-17	PASS	3.4	0.39%	27820	2.8	3	0
		Jun-17	PASS	3.2	0.47%	20462	3.7	0	0
Legend	Pass	Jul-17	PASS	-3.3	-0.46%	22097	3.4	0	1
Inconclusive		Aug-17	PASS	-3.6	-0.45%	25014	3.1	0	0
See Report for Details		Sep-17	PASS	4.8	0.55%	24894	3.2	0	2
Fail									
Trend (lpd) Period Trend (Litres per Day) Trend % Period Trend (%)									
MDLR Minimum Detectable Leak Rate	_								
PDs Poor Dip Count	2								
PDS Pool Dip Count									

Site Report. © Leighton O'Brien Pty Ltd

Report Date: 11-Apr-18 Report Period: Mar-18

Statistical Inventory Analysis Leighton O'Brien Pty Ltd PO Box 5018 Camberwell 3124 Ph 03 9804 2200

LEIGHTON O'BRIEN

				Trend					
		Period	Result	(lpd)	Trend %	T'put	MDLR	DDs	PDs
AA0525_GDR2074 GDR Automotive Se	rvice Unleaded	Oct-17	PASS	3.9	0.40%	30054	4.3	0	0
105 Eastern Rd	Tank 1	Nov-17	PASS	11.1	1.00%	33472	5.5	0	2
Turramurra NSW 2074		Dec-17	FLAG	-0.6	-0.07%	29166	4.1	0	2
	Pass	Jan-18	PASS	-2.3	-0.26%	26717	5.3	1	0
		Feb-18	PASS	-1.4	-0.14%	26032	6.9	0	0
		Mar-18	PASS	3.7	0.42%	27719	3.7	1	3
Site Comments: Apart from the three dat	a								
discrepancies, the results are good.	PULP 98	Oct-17	PASS	9.5	0.77%	38129	4.9	0	0
	Tank 2	Nov-17	PASS	3	0.24%	35852	4.2	0	1
		Dec-17	PASS	-5.8	-0.57%	32980	5.6	0	2
	Pass	Jan-18	PASS	1.8	0.20%	27431	4.4	0	1
		Feb-18	PASS	-8.2	-0.71%	32004	6.5	0	0
		Mar-18	PASS	-8.1	-0.75%	33352	4.2	1	1
	Diesel	Oct-17	PASS	4.8	0.55%	27001	2.8	0	0
	Tank 3	Nov-17	PASS	0.2	0.02%	29837	3.4	1	1
		Dec-17	PASS	1.3	0.18%	22997	2.6	0	2
Legend	Pass	Jan-18	PASS	5	0.81%	19240	2.3	0	2
Inconclusive		Feb-18	PASS	1.7	0.19%	24218	3.2	1	2
See Report for Details		Mar-18	PASS	8.9	1.08%	25436	1.6	1	1

Trend (lpd) Period Trend (Litres per Day)
Trend % Period Trend (%)
MDLR Period Trend (%)
MDLR Rate PDs Poor Dip Count DDs Data Discrepancy Count

Tank Calibration Adjustment

Statistical Inventory Analysis
Leighton O'Brien Pty Ltd.
PO Box 5018
Camberwell VIC 3124
Ph 03 9804 2200 sirainfo@leightonobrien.com

AA0525_GDR2074 GDR Automotive Serv

105 Eastern Rd Turramurra NSW 2074

Date 11-Apr-17
Unleaded tank 1

Tank Reports Leighton O'Brien Pty Ltd

Page 1

Comments

#1. The discrepancy on the 7 Mar is to correct for a gain that is obvious but unexplained.

The data discrepancy is worth looking at.

Result PASS

Period Ending: 31-Mar-17 Period Trend (Ipd): -4.3 Period Trend %: -0.41% MDLR (Ipd) 5

Raw Data

SIR Corrected Data

Day Var Cumm

Sales Deliveries Dios Day Var Cumm

Sales Deliverie

Open Dip Carry Over	Day	Sales	Deliveries		Day Var	Cumm.		Sales	Deliveries		Data Disc.	Day Var	Cumm.
01-Mar-17 1331 16100 -69 -69 1331 16100 -69 -69 02-Mar-17 1029 15200 129 60 1029 15200 129 60 03-Mar-17 1022 6708 20500 -386 -326 1022 6708 20500 -386 -326 04-Mar-17 1052 19500 52 -274 1052 19500 52 -274 05-Mar-17 661 19000 161 -113 661 19000 161 -113 06-Mar-17 1537 17400 -63 -176 1537 17400 -63 -176 07-Mar-17 877 17000 477 301 #1 877 17000 -502 -25 -201 08-Mar-17 1288 15800 88 389 1288 15800 88 -113 09-Mar-17 1233 14500 -67 322 1233 14500 -67	Open Dip		28-Feb	17500		(ent	28-Feb	17500			
02-Mar-17 1029 15200 129 60 1029 15200 129 60 03-Mar-17 1022 6708 20500 -386 -326 1022 6708 20500 -386 -326 04-Mar-17 1052 6708 20500 52 -274 05-Mar-17 661 19000 161 -113 661 19000 161 -113 06-Mar-17 1537 17400 -63 -176 1537 17400 -63 -176 07-Mar-17 877 17000 477 301 # 877 17000 -502 -25 -201 08-Mar-17 1288 15800 88 389 1288 15800 88 -113 09-Mar-17 1283 14500 -67 322 1233 14500 -67 -180 10-Mar-17 1899 12800 199 12 1899 12800 199 19 11-Mar-17 1063	Carry Over	-	-				#	-	-				
03-Mar-17 1022 6708 20500 -386 -326 1022 6708 20500 -386 -326 04-Mar-17 1052 19500 52 -274 1052 19500 52 -274 05-Mar-17 661 19000 161 -113 661 19000 161 -113 06-Mar-17 1537 17400 -63 -176 1537 17400 -63 -176 07-Mar-17 877 17000 477 301 #1 877 17000 -502 -25 -201 08-Mar-17 1233 14500 -67 322 1233 14500 -67 -180 10-Mar-17 1899 12800 199 521 1899 12800 199 19 11-Mar-17 1888 10500 188 359 888 10500 188 -143 13-Mar-17 1063 9400 -37 322 1063 9400 -37													
04-Mar-17 1052 19500 52 -274 1052 19500 52 -274 05-Mar-17 661 19000 161 -113 661 19000 161 -113 06-Mar-17 1537 17400 -63 -176 1750 17400 -63 -176 07-Mar-17 877 17000 477 301 #1 877 17000 -502 -25 -201 08-Mar-17 1288 15800 88 389 1288 15800 88 -113 10-Mar-17 1289 12800 199 521 1899 12800 199 19 11-Mar-17 1899 12800 199 521 1899 12800 199 19 11-Mar-17 1250 11200 -350 171 1250 11200 -350 -331 12-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 1	02-Mar-17	1029		15200	129	60		1029		15200		129	60
05-Mar-17 661 19000 161 -113 661 19000 161 -113 06-Mar-17 1537 17400 -63 -176 1537 17400 -63 -176 07-Mar-17 877 17000 477 301 #1 877 17000 -502 -25 -201 08-Mar-17 1288 15800 88 389 1288 15800 88 -113 09-Mar-17 1233 14500 -67 322 1233 14500 -67 -180 10-Mar-17 1899 12800 199 521 1899 12800 199 19 11-Mar-17 1899 12800 189 521 1899 12800 199 19 11-Mar-17 1825 11200 -350 171 1250 11200 -350 -331 12-Mar-17 1063 9400 -37 322 1063 9400 -37 -180	03-Mar-17	1022	6708	20500	-386	-326		1022	6708	20500		-386	-326
06-Mar-17 1537 17400 -63 -176 1537 17400 -63 -176 07-Mar-17 877 17000 477 301 #1 877 17000 -502 -25 -201 08-Mar-17 1288 15800 88 389 1288 15800 88 -113 09-Mar-17 1233 14500 -67 322 1233 14500 -67 -180 10-Mar-17 1899 12800 199 521 1899 12800 199 19 11-Mar-17 1899 12800 199 521 1899 12800 199 19 11-Mar-17 1250 11200 -350 171 1250 11200 -350 -331 13-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 14-Mar-17 1087 8400 87 409 1087 8400 87 -93 15-M		1052		19500						19500			
07-Mar-17 877 17000 477 301 #1 877 17000 -502 -25 -201 08-Mar-17 1288 15800 88 389 1288 15800 88 -113 09-Mar-17 1233 14500 -67 322 1233 14500 -67 -180 10-Mar-17 1899 12800 199 521 1899 12800 199 19 11-Mar-17 1250 11200 -350 171 1250 11200 -350 -331 12-Mar-17 1888 10500 188 359 888 10500 188 -433 13-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 14-Mar-17 1087 8400 87 409 1087 8400 87 -93 15-Mar-17 1087 8400 87 409 1087 8400 87 -93 16-Mar-17	05-Mar-17	661		19000	161	-113		661		19000		161	-113
08-Mar-17 1288 15800 88 389 1288 15800 88 -113 09-Mar-17 1233 14500 -67 322 1233 14500 -67 -180 10-Mar-17 1899 12800 199 521 1899 12800 199 19 11-Mar-17 1899 1250 11200 -350 171 1250 11200 -350 -331 12-Mar-17 1888 10500 188 359 888 10500 188 -143 13-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 14-Mar-17 1087 8400 87 409 1087 8400 87 -93 15-Mar-17 1000 7400 0 409 1000 7400 87 -93 16-Mar-17 1297 13049 19000 -152 257 1297 13049 19000 -152 -245	06-Mar-17	1537		17400	-63	-176		1537		17400		-63	-176
09-Mar-17 1233 14500 -67 322 1233 14500 -67 -180 10-Mar-17 1899 12800 199 521 1899 12800 199 19 11-Mar-17 1250 11200 -350 -331 12-Mar-17 1250 11200 -350 -331 12-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 14-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 14-Mar-17 1087 8400 87 409 1087 8400 87 -93 15-Mar-17 1000 7400 0 409 1000 7400 -93 16-Mar-17 1297 13049 19000 -152 257 1297 13049 19000 -152 257 1297 13049 19000 -152 25 300 188 16800 -152 25 300 152	07-Mar-17	877		17000	477	301	#1	877		17000	-502	-25	-201
10-Mar-17 1899 12800 199 521 1899 12800 199 19 11-Mar-17 1250 11200 -350 171 1250 11200 -350 -331 12-Mar-17 888 10500 188 359 888 10500 188 -143 13-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 14-Mar-17 1087 8400 87 409 1087 8400 87 -93 15-Mar-17 1000 7400 0 409 1000 7400 -93 16-Mar-17 1297 13049 19000 -152 -245 17-Mar-17 945 18000 -55 202 945 18000 -55 -300 18-Mar-17 1018 16800 -182 20 1018 16800 -182 -482 19-Mar-17 1076 15400 76 244 1076 15400	08-Mar-17	1288		15800	88	389		1288		15800		88	-113
11-Mar-17 1250 11200 -350 171 1250 11200 -350 -331 12-Mar-17 888 10500 188 359 888 10500 188 -143 13-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 14-Mar-17 1087 8400 87 409 1087 8400 87 -93 15-Mar-17 1000 7400 0 409 1000 7400 -93 16-Mar-17 1297 13049 19000 -152 257 1297 13049 19000 -152 -245 17-Mar-17 945 18000 -55 202 945 18000 -55 -300 18-Mar-17 1018 16800 -182 20 1018 16800 -182 -482 20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17	09-Mar-17	1233		14500	-67	322		1233		14500		-67	-180
12-Mar-17 888 10500 188 359 888 10500 188 -143 13-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 14-Mar-17 1087 8400 87 409 1087 8400 87 -93 15-Mar-17 1000 7400 0 409 1000 7400 -93 16-Mar-17 1297 13049 19000 -152 257 1297 13049 19000 -152 -245 17-Mar-17 945 18000 -55 202 945 18000 -55 -300 18-Mar-17 1018 16800 -182 20 1018 16800 -182 -482 19-Mar-17 548 16400 148 168 548 16400 148 -334 20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 </td <td>10-Mar-17</td> <td>1899</td> <td></td> <td>12800</td> <td>199</td> <td>521</td> <td></td> <td>1899</td> <td></td> <td>12800</td> <td></td> <td>199</td> <td>19</td>	10-Mar-17	1899		12800	199	521		1899		12800		199	19
13-Mar-17 1063 9400 -37 322 1063 9400 -37 -180 14-Mar-17 1087 8400 87 409 1087 8400 87 -93 15-Mar-17 1000 7400 0 409 1000 7400 -93 16-Mar-17 1297 13049 19000 -152 257 1297 13049 19000 -152 -245 17-Mar-17 945 18000 -55 202 945 18000 -55 -300 18-Mar-17 1018 16800 -182 20 1018 16800 -182 -482 19-Mar-17 548 16400 148 168 548 16400 148 -334 20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 22-Mar-17	11-Mar-17	1250		11200	-350	171		1250		11200		-350	-331
14-Mar-17 1087 8400 87 409 1087 8400 87 -93 15-Mar-17 1000 7400 0 409 1000 7400 -93 16-Mar-17 1297 13049 19000 -152 257 1297 13049 19000 -152 -245 17-Mar-17 945 18000 -55 202 945 18000 -55 -300 18-Mar-17 1018 16800 -182 20 1018 16800 -182 -482 19-Mar-17 548 16400 148 168 548 16400 148 -334 20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 22-Mar-17 757 8100 21700 157 300 757 8100 21700 157 -202 23-Mar-17 1419 20300 19 319 1419 20300	12-Mar-17	888		10500	188	359		888		10500		188	-143
15-Mar-17 1000 7400 0 409 1000 7400 -93 16-Mar-17 1297 13049 19000 -152 257 1297 13049 19000 -152 -245 17-Mar-17 945 18000 -55 202 945 18000 -55 -300 18-Mar-17 1018 16800 -182 20 1018 16800 -182 -482 19-Mar-17 548 16400 148 168 548 16400 148 -334 20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 22-Mar-17 757 8100 21700 157 300 757 8100 21700 157 -202 23-Mar-17 1419 20300 19 319 1419 20300 19 -183 24-Mar-17 906 19100 -294 25 906 19100	13-Mar-17	1063		9400	-37	322		1063		9400		-37	-180
16-Mar-17 1297 13049 19000 -152 257 1297 13049 19000 -152 -245 17-Mar-17 945 18000 -55 202 945 18000 -55 -300 18-Mar-17 1018 16800 -182 20 1018 16800 -182 -482 19-Mar-17 548 16400 148 168 548 16400 148 -334 20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 22-Mar-17 757 8100 21700 157 300 757 8100 21700 157 -202 23-Mar-17 1419 20300 19 319 1419 20300 19 -183 24-Mar-17 906 19100 -294 25 906 19100 -294 -477 25-Mar-17 1004 18200 104 129 1004 <td>14-Mar-17</td> <td>1087</td> <td></td> <td>8400</td> <td>87</td> <td>409</td> <td></td> <td>1087</td> <td></td> <td>8400</td> <td></td> <td>87</td> <td>-93</td>	14-Mar-17	1087		8400	87	409		1087		8400		87	-93
17-Mar-17 945 18000 -55 202 945 18000 -55 -300 18-Mar-17 1018 16800 -182 20 1018 16800 -182 -482 19-Mar-17 548 16400 148 168 548 16400 148 -334 20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 22-Mar-17 757 8100 21700 157 300 757 8100 21700 157 -202 23-Mar-17 1419 20300 19 319 1419 20300 19 -183 24-Mar-17 906 19100 -294 25 906 19100 -294 -477 25-Mar-17 1004 18200 104 129 1004 18200 104 -373 26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17	15-Mar-17	1000		7400	0	409		1000		7400			-93
18-Mar-17 1018 16800 -182 20 1018 16800 -182 -482 19-Mar-17 548 16400 148 168 548 16400 148 -334 20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 22-Mar-17 757 8100 21700 157 300 757 8100 21700 157 -202 23-Mar-17 1419 20300 19 319 1419 20300 19 -183 24-Mar-17 906 19100 -294 25 906 19100 -294 -477 25-Mar-17 1004 18200 104 129 1004 18200 104 -373 26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162	16-Mar-17	1297	13049	19000	-152	257		1297	13049	19000		-152	-245
19-Mar-17 548 16400 148 168 548 16400 148 -334 20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 22-Mar-17 757 8100 21700 157 300 757 8100 21700 157 -202 23-Mar-17 1419 20300 19 319 1419 20300 19 -183 24-Mar-17 906 19100 -294 25 906 19100 -294 -477 25-Mar-17 1004 18200 104 129 1004 18200 104 -373 26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17 851 15900 -49 295 851 15900 -49 <	17-Mar-17	945		18000	-55	202		945		18000		-55	-300
20-Mar-17 1076 15400 76 244 1076 15400 76 -258 21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 22-Mar-17 757 8100 21700 157 -202 23-Mar-17 1419 20300 19 319 1419 20300 19 -183 24-Mar-17 906 19100 -294 25 906 19100 -294 -477 25-Mar-17 1004 18200 104 129 1004 18200 104 -373 26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17 851 15900 -49 295 851 15900 -49 -207 29-Mar-17 894 15100 94 389 894 15100 94 -113 30-Mar-17 653 14400	18-Mar-17	1018		16800	-182	20		1018		16800		-182	-482
21-Mar-17 1099 14200 -101 143 1099 14200 -101 -359 22-Mar-17 757 8100 21700 157 300 757 8100 21700 157 -202 23-Mar-17 1419 20300 19 319 1419 20300 19 -183 24-Mar-17 906 19100 -294 25 906 19100 -294 -477 25-Mar-17 1004 18200 104 129 1004 18200 104 -373 26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17 851 15900 -49 295 851 15900 -49 -207 29-Mar-17 894 15100 94 389 894 15100 94 -113 30-Mar-17 653 14400 -47 342 653 14400 -47 <td< td=""><td>19-Mar-17</td><td>548</td><td></td><td>16400</td><td>148</td><td>168</td><td></td><td>548</td><td></td><td>16400</td><td></td><td>148</td><td>-334</td></td<>	19-Mar-17	548		16400	148	168		548		16400		148	-334
22-Mar-17 757 8100 21700 157 300 757 8100 21700 157 -202 23-Mar-17 1419 20300 19 319 1419 20300 19 -183 24-Mar-17 906 19100 -294 25 906 19100 -294 -477 25-Mar-17 1004 18200 104 129 1004 18200 104 -373 26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17 851 15900 -49 295 851 15900 -49 -207 29-Mar-17 894 15100 94 389 894 15100 94 -113 30-Mar-17 653 14400 -47 342 653 14400 -47 -160 31-Mar-17 908 13500 8 350 908 13500 8 -152 <td>20-Mar-17</td> <td>1076</td> <td></td> <td>15400</td> <td>76</td> <td>244</td> <td></td> <td>1076</td> <td></td> <td>15400</td> <td></td> <td>76</td> <td>-258</td>	20-Mar-17	1076		15400	76	244		1076		15400		76	-258
23-Mar-17 1419 20300 19 319 1419 20300 19 -183 24-Mar-17 906 19100 -294 25 906 19100 -294 -477 25-Mar-17 1004 18200 104 129 1004 18200 104 -373 26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17 851 15900 -49 295 851 15900 -49 -207 29-Mar-17 894 15100 94 389 894 15100 94 -113 30-Mar-17 653 14400 -47 342 653 14400 -47 -160 31-Mar-17 908 13500 8 350 908 13500 8 -152	21-Mar-17	1099		14200	-101	143		1099		14200		-101	-359
24-Mar-17 906 19100 -294 25 906 19100 -294 -477 25-Mar-17 1004 18200 104 129 1004 18200 104 -373 26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17 851 15900 -49 295 851 15900 -49 -207 29-Mar-17 894 15100 94 -113 30-Mar-17 653 14400 -47 342 653 14400 -47 -160 31-Mar-17 908 13500 8 350 908 13500 8 -152	22-Mar-17	757	8100	21700	157	300		757	8100	21700		157	-202
25-Mar-17 1004 18200 104 129 1004 18200 104 -373 26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17 851 15900 -49 295 851 15900 -49 -207 29-Mar-17 894 15100 94 389 894 15100 94 -113 30-Mar-17 653 14400 -47 342 653 14400 -47 -160 31-Mar-17 908 13500 8 350 908 13500 8 -152	23-Mar-17	1419		20300	19	319		1419		20300		19	-183
26-Mar-17 453 17800 53 182 453 17800 53 -320 27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17 851 15900 -49 295 851 15900 -49 -207 29-Mar-17 894 15100 94 389 894 15100 94 -113 30-Mar-17 653 14400 -47 342 653 14400 -47 -160 31-Mar-17 908 13500 8 350 908 13500 8 -152	24-Mar-17	906		19100	-294	25		906		19100		-294	-477
27-Mar-17 1162 16800 162 344 1162 16800 162 -158 28-Mar-17 851 15900 -49 295 851 15900 -49 -207 29-Mar-17 894 15100 94 389 894 15100 94 -113 30-Mar-17 653 14400 -47 342 653 14400 -47 -160 31-Mar-17 908 13500 8 350 908 13500 8 -152	25-Mar-17	1004		18200	104	129		1004		18200		104	-373
28-Mar-17 851 15900 -49 295 851 15900 -49 -207 29-Mar-17 894 15100 94 389 894 15100 94 -113 30-Mar-17 653 14400 -47 342 653 14400 -47 -160 31-Mar-17 908 13500 8 350 908 13500 8 -152	26-Mar-17	453		17800	53	182		453		17800		53	-320
29-Mar-17 894 15100 94 389 894 15100 94 -113 30-Mar-17 653 14400 -47 342 653 14400 -47 -160 31-Mar-17 908 13500 8 350 908 13500 8 -152	27-Mar-17	1162		16800	162	344		1162		16800		162	-158
30-Mar-17 653 14400 -47 342 653 14400 -47 -160 31-Mar-17 908 13500 8 350 908 13500 8 -152	28-Mar-17	851		15900	-49	295		851		15900		-49	-207
31-Mar-17 <u>908</u> 13500 8 350 <u>908</u> 13500 8 -152	29-Mar-17	894		15100	94	389		894		15100		94	-113
	30-Mar-17	653		14400	-47	342		653		14400		-47	-160
Throughput 32207 32207	31-Mar-17	908	_	13500	8	350		908	<u></u>	13500		8	-152
	Throughput	32207	_					32207					

Average Day Variance 131
Final Raw Loss/Gain 350

Average Day Variance 116 Final Raw Loss/Gain -152

Report ID: AA0525_GDR2074_2_ 6 April 2017

Statistical Inventory Analysis
Leighton O'Brien Pty Ltd.
PO Box 5018
Camberwell VIC 3124
Ph 03 9804 2200 sirainfo@leightonobrien.com

AA0525_GDR2074 GDR Automotive Serv

105 Eastern Rd Turramurra NSW 2074

Date 11-Apr-17
PULP 98 tank 2

Tank Reports Leighton O'Brien Pty Ltd

Page 2

Data Disc. Day Var Cumm.

Comments

The period trend is in excess of the recommended investigation threshold.

Result FAIL

Period Ending: 31-Mar-17 Period Trend (lpd): -21 Period Trend %: -1.67% MDLR (lpd) 5.4

 Raw Data
 SIR Corrected Data

 Day
 Sales
 Deliveries
 Dips
 Day Var
 Cumm.
 Sales
 Deliveries
 Dips

 Open Dip
 27-Feb
 12600
 Comment
 27-Feb
 12

Open Dip		27-Feb	12600	-	Con	nment	27-Feb	12600		
Carry Over	-	-				# -	-			
28-Feb-17	1226		11100	-274	-274	1226		11100	-274	-274
01-Mar-17	1423		9800	123	-151	1423		9800	123	-151
02-Mar-17	1759		8100	59	-92	1759		8100	59	-92
03-Mar-17	1429	13367	20000	-38	-130	1429	13367	20000	-38	-130
04-Mar-17	1283		18900	183	53	1283		18900	183	53
05-Mar-17	654		18000	-246	-193	654		18000	-246	-193
06-Mar-17	1308		16800	108	-85	1308		16800	108	-85
07-Mar-17	1382		15400	-18	-103	1382		15400	-18	-103
08-Mar-17	1299		14000	-101	-204	1299		14000	-101	-204
09-Mar-17	1544		12500	44	-160	1544		12500	44	-160
10-Mar-17	1400		11000	-100	-260	1400		11000	-100	-260
11-Mar-17	980		9850	-170	-430	980		9850	-170	-430
12-Mar-17	546		9250	-54	-484	546		9250	-54	-484
13-Mar-17	1236		8200	186	-298	1236		8200	186	-298
14-Mar-17	914		7000	-286	-584	914		7000	-286	-584
15-Mar-17	1581		5450	31	-553	1581		5450	31	-553
16-Mar-17	826	13152	17700	-76	-629	826	13152	17700	-76	-629
17-Mar-17	1386		16500	186	-443	1386		16500	186	-443
18-Mar-17	1172		15300	-28	-471	1172		15300	-28	-471
19-Mar-17	702		14700	102	-369	702		14700	102	-369
20-Mar-17	1644		12800	-256	-625	1644		12800	-256	-625
21-Mar-17	1293		11600	93	-532	1293		11600	93	-532
22-Mar-17	1304	12905	23200	-1	-533	1304	12905	23200	-1	-533
23-Mar-17	1480		21400	-320	-853	1480		21400	-320	-853
24-Mar-17	1706		19900	206	-647	1706		19900	206	-647
25-Mar-17	1068		18600	-232	-879	1068		18600	-232	-879
26-Mar-17	942		17800	142	-737	942		17800	142	-737
27-Mar-17	1316		16600	116	-621	1316		16600	116	-621
28-Mar-17	1380		15200	-20	-641	1380		15200	-20	-641
29-Mar-17	1402		13900	102	-539	1402		13900	102	-539
30-Mar-17	1158		12800	58	-481	1158		12800	58	-481
31-Mar-17	1588	_	11100	-112	-593	1588		11100	-112	-593
Throughput	40331	_				40331	_			

Average Day Variance 127
Final Raw Loss/Gain -593

Average Day Variance 127 Final Raw Loss/Gain -593

Report ID: AA0525_GDR2074_28_ 6 April 2017

Statistical Inventory Analysis
Leighton O'Brien Pty Ltd.
PO Box 5018
Camberwell VIC 3124
Ph 03 9804 2200 sirainfo@leightonobrien.com

AA0525_GDR2074 GDR Automotive Serv

105 Eastern Rd Turramurra NSW 2074

Date 11-Apr-17

Diesel tank 3

Tank Reports Leighton O'Brien Pty Ltd

Page 3

Comments

#1. The discrepancy on the 9 Mar is to correct for a loss that is obvious but unexplained.

#2. The observation on the 7 Mar has been removed to allow cleaner data for the analysis.

The data discrepancy is worth looking at.

Result PASS

Period Ending: 31-Mar-17 Period Trend (Ipd): 3.4 Period Trend %: 0.39% MDLR (Ipd) 2.2

Raw Data

SIR Corrected Data

Day Sales Deliveries Dins Day Var Cumm Sales Deliveri

Day	Sales	Deliveries		Day Var	Cumm.		Sales	Deliveries I		Data Disc.	Day Var	Cumm.
Open Dip		28-Feb	5650		(Commo	ent	28-Feb	5650			
Carry Over	-	-				#	-	-				
01-Mar-17	939		4750	39	39		939		4750		39	39
02-Mar-17	787		3950	-13	26		787		3950		-13	26
03-Mar-17	1130	10819	13700	61	87		1130	10819	13700		61	87
04-Mar-17	903		12700	-97	-10		903		12700		-97	-10
05-Mar-17	377		12500	177	167		377		12500		177	167
06-Mar-17	734		11600	-166	1		734		11600		-166	1
07-Mar-17	608		10650	-342	-341	#2	dip removed					
08-Mar-17	876		10150	376	35		1484		10150		34	35
09-Mar-17	867		9000	-283	-248	#1	867		9000	329	46	81
10-Mar-17	822		8200	22	-226		822		8200		22	103
11-Mar-17	990		7200	-10	-236		990		7200		-10	93
12-Mar-17	524		6700	24	-212		524		6700		24	117
13-Mar-17	1035		5600	-65	-277		1035		5600		-65	52
14-Mar-17	937		4700	37	-240		937		4700		37	89
15-Mar-17	1392		3350	42	-198		1392		3350		42	131
16-Mar-17	929	5698	8000	-119	-317		929	5698	8000		-119	12
17-Mar-17	857		7200	57	-260		857		7200		57	69
18-Mar-17	820		6300	-80	-340		820		6300		-80	-11
19-Mar-17	579		5780	59	-281		579		5780		59	48
20-Mar-17	1199		4600	19	-262		1199		4600		19	67
21-Mar-17	695		3950	45	-217		695		3950		45	112
22-Mar-17	708	8258	11500	0	-217		708	8258	11500			112
23-Mar-17	690		10750	-60	-277		690		10750		-60	52
24-Mar-17	741		10100	91	-186		741		10100		91	143
25-Mar-17	1352		8700	-48	-234		1352		8700		-48	95
26-Mar-17	438		8300	38	-196		438		8300		38	133
27-Mar-17	672		7600	-28	-224		672		7600		-28	105
28-Mar-17	807		6950	157	-67		807		6950		157	262
29-Mar-17	1360		5450	-140	-207		1360		5450		-140	122
30-Mar-17	1093		4400	43	-164		1093		4400		43	165
31-Mar-17	1117	_	3250	-33	-197		1117	_	3250		-33	132
Throughput	26978	_			_		26978	_		_		_

Average Day Variance 89
Final Raw Loss/Gain -197

Average Day Variance 62
Final Raw Loss/Gain 132

Statistical Inventory Analysis
Leighton O'Brien Pty Ltd.
PO Box 5018
Camberwell VIC 3124
Ph 03 9804 2200 sirainfo@leightonobrien.com

AA0525_GDR2074 GDR Automotive Serv

Average Day Variance 79

Final Raw Loss/Gain

74

105 Eastern Rd Turramurra NSW 2074

Date 12-Jan-18
Unleaded tank 1

Tank Reports Leighton O'Brien Pty Ltd

Page 1

Comments

#1. The observations on the 11 Dec & 27 Dec have been removed to allow cleaner data for the analysis.

The result has been flagged due to a notable increase in the losses from last month. Greater care is required to eliminate poor dips.

Result FLAG

Period Ending: 31-Dec-17 Period Trend (lpd): -0.6 Period Trend %: -0.07% MDLR (lpd) 4.1

 Raw Data
 SIR Corrected Data

 Day
 Sales
 Deliveries Dips
 Day Var
 Cumm.
 Sales
 Deliveries

Day	Sales	Deliveries		Day Var	Cumm.		Sales	Deliveries		Data Disc. Day Var	Cumm.
Open Dip		30-Nov	14900			Comme	ent	30-Nov	14900		
Carry Over	-	-				#	-	-			
01-Dec-17	1404		13700	204	204		1404		13700	204	204
02-Dec-17	953		12700	-47	157		953		12700	-47	157
03-Dec-17	622	6820	19000	102	259		622	6820	19000	102	259
04-Dec-17	1279		17600	-121	138		1279		17600	-121	138
05-Dec-17	1390		16200	-10	128		1390		16200	-10	128
06-Dec-17	1184		15000	-16	112		1184		15000	-16	112
07-Dec-17	1121		13800	-79	33		1121		13800	-79	33
08-Dec-17	1057		12700	-43	-10		1057		12700	-43	-10
09-Dec-17	1088		11800	188	178		1088		11800	188	178
10-Dec-17	917		11000	117	295		917		11000	117	295
11-Dec-17	1027		9600	-373	-78	#1	dip removed	l			
12-Dec-17	1153		8600	153	75		2180		8600	-220	75
13-Dec-17	1059		7500	-41	34		1059		7500	-41	34
14-Dec-17	1155		6400	55	89		1155		6400	55	89
15-Dec-17	1168		5200	-32	57		1168		5200	-32	57
16-Dec-17	1264		4000	64	121		1264		4000	64	121
17-Dec-17	605	16343	19800	62	183		605	16343	19800	62	183
18-Dec-17	1291		18500	-9	174		1291		18500	-9	174
19-Dec-17	979		17600	79	253		979		17600	79	253
20-Dec-17	1319		16400	119	372		1319		16400	119	372
21-Dec-17	1309		15000	-91	281		1309		15000	-91	281
22-Dec-17	1204	10029	23800	-25	256		1204	10029	23800	-25	256
23-Dec-17	1216		22400	-184	72		1216		22400	-184	72
24-Dec-17	621		21900	121	193		621		21900	121	193
25-Dec-17	0		21900	0	193		0		21900		193
26-Dec-17	0		21900	0	193		0		21900		193
27-Dec-17	522		21100	-278	-85	#1	dip removed	l			
28-Dec-17	750		20500	150	65		1272		20500	-128	65
29-Dec-17	642		19800	-58	7		642		19800	-58	7
30-Dec-17	458		19400	58	65		458		19400	58	65
31-Dec-17	409	_	19000	9	74		409	_	19000	9	74
Throughput	29166	_			_		29166	_			_

Average Day Variance 93
Final Raw Loss/Gain 74

Report ID: AA0525_GDR2074_2_4 January 2018

Statistical Inventory Analysis
Leighton O'Brien Pty Ltd.
PO Box 5018
Camberwell VIC 3124
Ph 03 9804 2200 sirainfo@leightonobrien.com

AA0525 GDR2074 GDR Automotive Serv

105 Eastern Rd Turramurra NSW 2074

Date 12-Jan-18
PULP 98 tank 2

Tank Reports Leighton O'Brien Pty Ltd

Page 2

Comments

Raw Data

#1. The observations on the 5 Dec & 14 Dec have been removed to allow cleaner data for the analysis.

Greater care is required to eliminate poor dips.

Result PASS

SIR Corrected Data

Period Ending: 31-Dec-17 Period Trend (lpd): -5.8 Period Trend %: -0.57% MDLR (lpd) 5.6

Deliveries Dips Deliveries Dips Data Disc. Day Var Cumm. Day Sales Day Var Cumm. Sales Ópen Dip 29-Nov 13800 Comment 29-Nov 13800 Carry Over # 30-Nov-17 1734 11900 -166 -166 1734 11900 -166 -166 01-Dec-17 10800 10800 1257 157 1257 157 -9 -9 9100 9100 02-Dec-17 1726 26 17 1726 26 17 03-Dec-17 798 13549 22000 149 166 798 13549 22000 149 166 04-Dec-17 1050 20700 -250 -84 1050 20700 -250 -84 05-Dec-17 19200 -387 -471 dip removed 1113 06-Dec-17 1060 18300 160 -311 2173 18300 -227 -311 07-Dec-17 17400 37 -274 17400 37 -274 937 937 08-Dec-17 1265 16400 265 -9 1265 16400 265 -9 09-Dec-17 703 15800 103 94 703 15800 103 94 10-Dec-17 781 14800 -219 -125 781 14800 -219 -125 11-Dec-17 1230 13600 30 -95 1230 13600 30 -95 12-Dec-17 1252 12300 -48 -143 1252 12300 -48 -143 13-Dec-17 -87 1456 10900 56 -87 1456 10900 56 14-Dec-17 973 9500 -427 -514 #1 dip removed 15-Dec-17 1265 8600 365 -149 2238 8600 -62 -149 16-Dec-17 613 8000 13 -136 613 8000 13 -136 17-Dec-17 830 12127 19400 103 -33 830 12127 19400 103 -33 1135 18-Dec-17 1135 18300 35 2 18300 35 2 19-Dec-17 17200 72 1172 74 1172 17200 72 74 20-Dec-17 1388 15900 88 162 1388 15900 88 162 21-Dec-17 1330 14400 -170 -8 1330 14400 -170 -8 22-Dec-17 1451 10021 22600 -370 -378 1451 10021 22600 -370 -378 23-Dec-17 1204 21500 -274 1204 21500 -274 104 104 24-Dec-17 1286 20200 -14 -288 1286 20200 -14 -288 25-Dec-17 20200 0 -288 20200 -288 0 0 26-Dec-17 20200 -288 20200 -288 n n 0 1166 27-Dec-17 19000 -34 -322 1166 19000 -34 -322 28-Dec-17 848 18400 248 -74 848 18400 248 -74 29-Dec-17 17600 -139 735 17600 -65 735 -65 -139

Report ID: AA0525_GDR2074_28_ 4 January 2018

430

792

32980

17000

16400

Final Raw Loss/Gain

Average Day Variance

-170

192

141

-309

-117

-117

430

792

32980

17000

16400

Average Day Variance

-170

192

Final Raw Loss/Gain

-309

-117

-117

30-Dec-17

31-Dec-17

Throughput

Statistical Inventory Analysis Leighton O'Brien Pty Ltd. PO Box 5018 Camberwell VIC 3124 Ph 03 9804 2200 sirainfo@leightonobrien.com

AA0525_GDR2074 GDR Automotive Serv

105 Eastern Rd Turramurra NSW 2074

> Date 12-Jan-18 Diesel tank 3

Tank Reports Leighton O'Brien Pty Ltd

Page 3

Comments

#1. The observations on the 3 Dec & 6 Dec have been removed to allow cleaner data for the analysis.

Greater care is required to eliminate poor dips.

PASS Result

Period Ending: 31-Dec-17 Period Trend (lpd): 1.3 Period Trend %: 0.18% MDLR (lpd) 2.6

Raw Data SIR Corrected Data Day Var Cumm. Sales Deliveries Dips Deliveries Dips Day Sales

Raw Data						_	SIR Correct				
Day	Sales	Deliveries	Dips	Day Var	Cumm.		Sales	Deliveries		Data Disc. Day Var	Cumm.
Open Dip		30-Nov	5300			Comme	ent	30-Nov	5300		
Carry Over	-	-				#	-	-			
01-Dec-17	1032		4350	82	82		1032		4350	82	82
02-Dec-17	600		3800	50	132		600		3800	50	132
03-Dec-17	769	11004	14500	465	597	#1	dip removed				
04-Dec-17	475		13400	-625	-28		1244	11004	13400	-160	-28
05-Dec-17	745		12600	-55	-83		745		12600	-55	-83
06-Dec-17	707		11800	-93	-176	#1	dip removed				
07-Dec-17	1470		10500	170	-6		2177		10500	77	-6
08-Dec-17	1361		9200	61	55		1361		9200	61	55
09-Dec-17	837		8300	-63	-8		837		8300	-63	-8
10-Dec-17	343		8000	43	35		343		8000	43	35
11-Dec-17	559		7400	-41	-6		559		7400	-41	-6
12-Dec-17	1066		6400	66	60		1066		6400	66	60
13-Dec-17	788		5600	-12	48		788		5600	-12	48
14-Dec-17	1266		4350	16	64		1266		4350	16	64
15-Dec-17	939		3400	-11	53		939		3400	-11	53
16-Dec-17	747		2700	47	100		747		2700	47	100
17-Dec-17	654	8121	10200	33	133		654	8121	10200	33	133
18-Dec-17	582		9650	32	165		582		9650	32	165
19-Dec-17	995		8600	-55	110		995		8600	-55	110
20-Dec-17	1048		7550	-2	108		1048		7550	-2	108
21-Dec-17	1160		6400	10	118		1160		6400	10	118
22-Dec-17	1035	6932	12350	53	171		1035	6932	12350	53	171
23-Dec-17	1179		11000	-171	0		1179		11000	-171	
24-Dec-17	652		10400	52	52		652		10400	52	52
25-Dec-17	0		10400	0	52		0		10400		52
26-Dec-17	0		10400	0	52		0		10400		52
27-Dec-17	623		9700	-77	-25		623		9700	-77	-25
28-Dec-17	610		9150	60	35		610		9150	60	35
29-Dec-17	435		8750	35	70		435		8750	35	70
30-Dec-17	116		8600	-34	36		116		8600	-34	36
31-Dec-17	204		8450	54	90		204		8450	54	90
Throughput	22997	_					22997	-			

Average Day Variance 83 Final Raw Loss/Gain 90 Average Day Variance 50 Final Raw Loss/Gain 90

Compaction & Soil Testing Services Pty Ltd

1/78 Owen Street, GLENDENNING NSW 2761 • ABN 44 106 976 738

Phone: 02 9675 7522 Fax: 02 9675 7544

Email: office@csts.net.au Web: www.csts.net.au

Appendix G

Laboratory Documentation

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Compaction and Soil Testing Pty Ltd
Attention	Craig Ridley

Sample Login Details	
Your reference	E1256
Envirolab Reference	191179
Date Sample Received	09/05/2018
Date Instructions Received	09/05/2018
Date Results Expected to be Reported	17/05/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	35 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	5.2
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst					
Phone: 02 9910 6200	Phone: 02 9910 6200					
Fax: 02 9910 6201	Fax: 02 9910 6201					
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au					

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	Organophosphorus Pesticides	PCBsin Soil	Acid Extractable metalsin soil	Synthetic Pyrethroids in soil	Carbamates in Soil	Total Phenolics (as Phenol)	Asbestos ID - soils NEPM - ASB- 001
BH1-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH1-1.5	✓	✓	✓	✓			✓	✓			✓	
BH1-2.5	✓	✓	✓	✓			✓	✓			✓	
BH2-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH2-1.5	✓	✓	✓	✓			✓	✓			✓	
BH3-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH3-1.5	✓	✓	✓	✓			✓	✓			✓	
BH4-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH4-1.5	✓	✓	✓	✓			✓	✓			✓	
BH4-2.5	✓	✓	✓	✓			✓	✓			✓	
BH5-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH5-1.5	✓	✓	✓	✓			✓	✓			✓	
BH5-2.5	✓	✓	✓	✓			✓	✓			✓	
BH6-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH6-1.5	✓	✓	✓	✓			✓	✓			✓	
BH7-0.2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH8-0.2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH9-0.2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH10-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH10-1.5	✓	✓	✓	✓			✓	✓			✓	
BH11-2.5	✓	✓	✓	✓			✓	✓			✓	
BH11-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH11-1.5	✓	✓	✓	✓			✓	✓			✓	
BH11-2.3	✓	✓	✓	✓			✓	✓			✓	
BH12-1.0	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH12-1.8	✓	✓	✓	✓			✓	✓			✓	
BH13-1.0	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH13-2.0	✓	✓	✓	✓			✓	✓			✓	
BH14-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
BH14-1.5	✓	✓	✓	✓			✓	✓			✓	
BH14-2.5	✓	✓	✓	✓			✓	✓			✓	
B1		✓	✓	✓				✓				

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticidesin soil	Organophosphorus Pesticides	PCBsin Soil	Acid Extractable metalsin soil	Synthetic Pyrethroids in soil	Carbamates in Soil	Total Phenolics (as Phenol)	Asbestos ID - soils NEPM - ASB- 001
B2		✓	✓	✓				✓				
ТВ		✓										
TS		✓										

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.**

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Client: Compaction & Soil Testing Services Pty Ltd 👚

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP - National phone number 1300 42 43 44

Contact Pers	on: Craig Ridley		_			_			E1:	256					l M	/leibourj	ne Lab -	Envirola	ab Servic	ces
Project Mgr:					PO No).;						_				A Dalmo				
Sampler:							iot <u>e No</u>]	'n US 976	3 2500	/ melbo	urne@e	envirolab.com.au
Address:	P.V				Date :	esults	requir	ed:			Stan	dard				risbane				
	1/78 Ov	ven street							_		ay / 2 c	-	-			0a, 10-2 h 07 326				4014 virolab.com.au .
	Glendennir	a NSW 276	51	-		Inform i rges ap		tvance i	f urgen	t tumai	round is	require	ed -							
Phone:	(02) 9675 7522	Mob:	0488 002 2	273				at / eq	uis /				-		-	<u>idelaide</u> a The Pa				
		-				ommer		5	_	-										vìrolab.com.au
Email:	acco	unts@cst .ig@csts.r													l					
".		nformation		я . :					_		Test	ls Requ	uired			_			٠.	Comments
			<u> </u>	<u> </u>					-	l				I	T			Γ		
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Comba 8	Combo 4	Combo 3	PCB	NOC	MTBE	Synthetic Pyrethroids	Carbamates	Asbestos NEPM	8TeX		:				Provide as much information about the sample as you can
			08.05.18	Soil	X				Х	Х	χ.	Х	Х	├			_	_		
	BH1 0.5m			Soil	-^-	Х	\vdash	->	<u>^</u>	X	 - ^-	^	 ^		├ -	<u> </u>				
2.	BH1 1.5m		08.05.18			X	\vdash	×	X	X		-		-				_		<u> </u>
	SBH1 2.5m		08.05.18	Soil Soil	Х		 	_^	X	X	Х	Х	V					-/2	OUAB	Enviroleb Services
4	BH2 0.5m	_	08.05.18		-^-		 	×		. ^ X	 ^	 -^-	X					ENV		12 Ashley St Chaiswood NSV2 2057
· <u>5</u>	BH2 1.5m		08.05.18	Soil	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Х			X		 	 ,						Job	No:	Ph: (02) 9910 6200
<u>2</u>	BH3 0.5m		08.05.18	<u>. Soil</u>	Х	V	<u> </u>		X	X	X	Х	Х		-					191179
7	BH3 1.5m		08.05.18	Soil		Х	<u> </u>	X	X	X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	 .					Receive	
8	BH4 0.5m		08.05.18	Soil	Х	- ·			X	X	X	Х	Х		1				Receiv yed By	
9	BH4 1.5m		08.05.18	Soil		X		X	X	X		_			!					imblant
<u>(o</u>	BH4 2.5m		08.05.18	Soil	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X		Χ_	X	X		 , ,	.		├─		· · -		ng: Ice(
4	BH5 0.5m		08.05.18	Soi!	<u>X</u>	- , , -			X	X	X_	X	X		-			Secu	itychite	Broken/None
12	BH5 1.5m	<u> </u>	08.05.18	Soi!	<u> </u>	X	<u> </u>	×	X	X	<u> </u>	-		 -	 			_		<u>**</u>
13	BH5 2.5m		08.05.18	Soil	_	Įχ		X	<u>X</u>	Х		L		;	 				<u> </u>	
Relinquished		7 5	-1				(Comp	any): j		_					-	se only		~		
Print Name:		DTEE		· .		<u>Name:</u>	T		Pa						1 .					lent (circle one)
Date & Time			018			& Time	<u> </u>	<u> </u>	<u> 50(</u>	\$	<u>।५</u> ५	<u> </u>			1 '					(if applicable)
Signature:		/		vion 5. Dane 1 of 1	Signa	tur e :			1/1	/hita -			Blue -	. Clien	Trans;					1 / courier Page No: 1 / 2
Г	con Chain of Custody Clin	47at laamad ?	DMEHO Vare	ann 5 Daga 1 of 1					<i>V V</i>	THE "	LUUL	UUV /	いんし -	U//U//	//	7 F 11 IN	1100	<i>aini 111</i> 1	$\nu\nu\nu$	rugo noi j j 🚣

Client Project Name / Number / Site etc (ie report title):

E1 256

Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolab.com.au

Perth Lab - MPL Laboratories 16-18 Hayden Crt Myaree, WA 6154

Ph 08 9317 2505 / lab@mpl.com.au

Client: Compaction & Soil Testing Services Pty Ltd

CHAIN OF CUSTODY - Client

. ENVIROLAB GROUP - National phone number 1300 42 43 44

son: Craig Ridley				!	_			E1.	250					Melbourne Lab - Envirolab Services					
<u> </u>				PO No	-=							_						•	
														_	11 05 97	03 2500	, meio	Jui Hew	thait Man-churan
				Date r	esults	requir	e d:			Stan	dard								
1/78 Ov	ven street																		
• Clandonnia	NEW 274	E 4					tvance i	if urgen	t tumai	round is	require	d -					•		
	-						at / eo	uis /											
·							,	,,											
	_																		
			:	 						Tocl	e Don	ii rodd	٠.	_					Comments
Sample II	njermation		<u> </u>	l ·					8	1631	Sireut	IN CO				<u> </u>	<u>- </u>	Т	Commence
Client Sample ID or information	Depth	Date sampled	Type of sample	Combo 8	Combo 4	Combo 3	8C8	DOA	MTBE	Synthetic Pyrethroids	Carbamates	Asbestos NEPM	BTEX		_				Provide as much information about the sample as you can
BH6 0.5m	i	08.05.18	Soil	Х				X	Х	X	X	Χ							
BH6 1.5m		08.05.18	Soil		Х		Х	Х	Х						_				
BH7 0.2m		08.05.18	Soil	X				Х	Х	X	X	Х							<u></u>
BH8 0.2m		08.05.18	Soil	Х				X	Χ	Х	Х	Х							
- BH9 0.2m		08.05.18	Soil	Х				Х	Χ	Х	X	Х							
² BH10 0.5m		08.05.18	Şoil	Х				Х	Х	Х	X_	Х							
BH10 1.5m		08.05.18	Soil		X		Х	Х	Χ					ļ. <u> </u>					
BH10 2.5m		08.05.18	Soil		Χ		Х	Х	Χ										
BH11 0.5m		08.05.18	Soil	X				Х	Х	Х	Χ	X							
BH11 1.5m	-	08.05.18	Soil		X		Х	Х	Х				<u>L </u>	<u> </u>				<u> </u>	
BH11 2.3m		08.05.18	Soil		X		X	X	Χf	_					<u> </u>		<u> </u>		
BH12 1.0m		08.05.18	Soil	X				X	X	Χ_	X	Х		<u> </u>					<u> </u>
		08.05.18	Soil		Х		X_	Х	Χ			<u> </u>				<u> </u>	<u> </u>		<u> </u>
ed by (Company);				Recei	ved by	(Com	anγ):	EL			· [6	7117	7_	Lab use only:					
Print Name: TETE A WOLED U					······································								Samples Received: Cool or Ambient (circle one)						
e: 9 MAT			<u> </u>	Date	& Time	<u>: 919</u>	<u>Poi</u>	8	l	_	<u> </u>		·	Temp	eratur	e Recei	ived a	tı	(if applicable)
PNET	7/			Signa	ture:				//- 29	PR.		O.	~						
	### 1/78 Ov Glendennin	### Company Co	Client Sample ID or information	Client Sample ID or Information Depth Date sample Type of sample	PO Note	PO No.: Envirolab Qu Date results	PO No.: Envirolab Quote No Date results required Po No.: Envirolab Quote No Date results required Po No.: Envirolab Quote No Date results required Po Choose: standar Note: Inform lab in a surcharges apply	PO No.: Envirolab Quote No. : Date results required: Or choose: standard / sa Note: Information lab in advance. surcharges apply Report format: esdat / eq Company: Compa	PO No.: Envirolab Quote No. : Date results required: Or choose: standard / same da Note: Inform lab in advance if urgen surcharges apply Report format: esdat / equis / Lab Comments: Lab Comments: Lab Comments: Lab Comments: Lab Comments: Lab Comments: Lab Comments:	PO No.:	PO No.: Envirolab Quote No.: Envirolab Quote No.: Envirolab Quote No.: Envirolab Quote No.: Envirolab Quote No.: Envirolab Quote No.: Envirolab Quote No.: Envirolab Quote No.: Envirolab Quote No.: Envirolab Quote No.:	PO No.: Envirolab Quote No.: Date results required: Standard	PO No.: Envirolab Quote No. : Date results required: Standard Or choose: standard same day 1 day 2 day 3 day Acte: Inform lab in advance if urgent tumeround is required Surcharges apply Sample Information Depth Date Sample information Depth Date Type of sample Sample	PO No.: Envirolab Quote No.: Date results required: Standard	PO No.: Envirolab Quote No.: Date Envirolab Quote No.: Date results required: Standard Or choose: standard same day / 1 day / 2 day / 3 day Note: Inform tob in advance if urgent tumaround is required Envirolab Quote No.: Inform tob in advance if urgent tumaround is required Envirolab Quote No.: Inform tob in advance if urgent tumaround is required Envirolab Quote No.: Information Information Depth Date Sample Information Depth Date Sample Information Depth Date Sample Information Depth Date Sample Information Depth Date Sample Information Information Depth Date Sample Information Information Depth Date Information Depth Date Information Information Depth Date Information Information Information Information Depth Date Information I	Po No.:	PO No.:	PO No.: Envirolab Quote No. : Standard Standa	PO No.: Envirolab Quote No. : Envirolab Quote No. : Envirolab Quote No. : Envirolab Quote No. :

Client Project Name / Number / Site etc (ie report title):

Sydney Lab - Envirolab Services

Perth Lab - MPL Laboratories 16-18 Hayden Crt Myaree, WA 6154

12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolab.com.au

Ph 08 9317 2505 / lab@mpl.com.au

Client: Compaction & Soil Testing Services Pty Ltd

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP - National phone number 1300 42 43 44

Contact Perso	on: Craig Ridley	_							E1	256						Melbourne Lab - Envirolab Services 1A Dalmore Drive Scoresby VIC 3179				
Project Mgr:	<u> </u>				PO No).:														3179 envirolab.com.au
Sampler:	<u> </u>						iote No											_		
Address:					Date r	resuits	requir	ed:			Stan	dard							ab Servi 1yo, QLD	
	1/78 Ow	ren street									ay / 2 c									virolab.com.au
	Glendennin	a NSW 276	1			intorm i Irges ap		dyance i	ıf urgen	t turnai	round is	require	<i>a</i> -		,	delaide	Office -	Envirol	ab Servi	ces
Phone: (Mob:	0488 002 2	273			at: esd	at / eq	uis /						7	a The Pa	arade, N	lorwood	i, SA 506	57
Email:	acco	unts@csts	s.net.au		Lab C	ommer	its:		_						P	ት 0406 3	350 706	wirołab.com.au		
		ig@csts.n																		
33, 1	Sample ir	nformation.		·	!	-					Test	s Requ	ired					<u> </u>	<u>.</u>	Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Combo B	Combo 4	Combo 3	PCB	VOC	MTBË	Synthetic Pyrethroids	Carbamates	Asbestos NEPM	断欧						Provide as much information about the sample as you can
27	BH13-1.0m		08.05.18	Soil	Х				X	Х	X	X	Х							
58	, BH13 2.0m		08.05.18	Soil		Х		Х	Х	Х										
29	BH14 0.5m		08.05.18	Soil	X				Х	Χ	Х	Х	X							
30	BH14 1.5m	·	08.05.18	Soil		X		X	X	Х									<u> </u>	
3/	BH14 2.5m		08.05.18	Soil		X		X	Х	Х									<u> </u>	<u> </u>
32	Bi		08.05.18	Soil			X								<u>. </u>					<u> </u>
33	B2		08.05.18	Soil			X												<u> </u>	
34	TB		08.05.18	Soil										Χ			<u> </u>			
35~	TS		08.05.18	Soil										Χ					L	
				n			<u> </u>	<u> </u>		<u> </u>	<u> </u>									
							<u> </u>	<u> </u>			<u> </u>								<u> </u>	
																			<u> </u>	
																				<u> </u>
Relinquished	l by (Company):	آکی ے	<u>. </u>		Recei	ved by	(Comp	any):	وينظ				1911	39	Lab u.	- se oniy	v:			
Print Name:	TETE	HV	37E	0 <u>V</u>	Print	Name:			Ray						Samp	les Rec	ceived:	Cool	or Amb	eient (circle one)
Date & Time		201	<u>¥</u>		_	& Time	:- <u>-</u>	· अ [5	101	<u>}-</u>	140	<u> </u>				•	e Rece			(if applicable)
Signature:	1 Acres			_	Signa	ture:			1/	lhita	PL Lab c	onic /	Riuo -	Člion						d / courier Page No: 12/13
For	m: 302 - Chain of Custody-Cli	ènt, Issued 2	2/05/12, Vers	sion 5, Page 1 of 1.						me -	LaD L	UPY /	DIUC -	CHCH	copy	7 FR0	nc	war n	DOUN	109011018113

Client Project Name / Number / Site etc (le report title):

<u>Sydney Lab</u> - Envirolab Services

Perth Lab - MPL Laboratories 16-18 Hayden Crt Myaree, WA 6154

12 Ashley St, Chatswood, NSW 2067 Ph 02 9910 6200 / sydney@envirolab.com.au

Ph 08 9317 2505 / lab@mpl.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 191179

Client Details	
Client	Compaction and Soil Testing Pty Ltd
Attention	Craig Ridley
Address	Unit 1, 78 Owen St, Glendenning, NSW, 2761

Sample Details	
Your Reference	<u>E1256</u>
Number of Samples	35 Soil
Date samples received	09/05/2018
Date completed instructions received	09/05/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	17/05/2018
Date of Issue	22/05/2018
Reissue Details	This report replaces R00 created on 17/05/2018 due to: sample ID error
NATA Accreditation Number 2901. T	his document shall not be reproduced except in full.
Accredited for compliance with ISO/II	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist Jeremy Faircloth, Organics Supervisor Ken Nguyen, Senior Chemist Lucy Zhu, Asbsestos Analyst Nancy Zhang, Assistant Lab Manager Nick Sarlamis, Inorganics Supervisor **Authorised By**

Jacinta Hurst, Laboratory Manager

TECHNICAL

VOCs in soil						
Our Reference		191179-1	191179-2	191179-3	191179-4	191179-5
Your Reference	UNITS	BH1	BH1	BH1	BH2	BH2
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1

VOCs in soil						
Our Reference		191179-1	191179-2	191179-3	191179-4	191179-5
Your Reference	UNITS	BH1	BH1	BH1	BH2	BH2
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	114	112	105	107	112
Surrogate aaa-Trifluorotoluene	%	91	93	105	91	108
Surrogate Toluene-d ₈	%	100	99	99	98	100
Surrogate 4-Bromofluorobenzene	%	99	94	93	85	93

VOCs in soil						
Our Reference		191179-6	191179-7	191179-8	191179-9	191179-10
Your Reference	UNITS	ВН3	BH3	BH4	BH4	BH4
Depth		0.5	1.5	0.5	1.5	2.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1

VOCs in soil						
Our Reference		191179-6	191179-7	191179-8	191179-9	191179-10
Your Reference	UNITS	BH3	BH3	BH4	BH4	BH4
Depth		0.5	1.5	0.5	1.5	2.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	114	110	109	112	118
Surrogate aaa-Trifluorotoluene	%	101	105	102	102	107
Surrogate Toluene-d ₈	%	99	93	92	95	107
Surrogate 4-Bromofluorobenzene	%	91	96	88	90	95

VOCs in soil						
Our Reference		191179-11	191179-12	191179-13	191179-14	191179-15
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH6
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1

VOCs in soil						
Our Reference		191179-11	191179-12	191179-13	191179-14	191179-15
Your Reference	UNITS	BH5	BH5	BH5	ВН6	BH6
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	119	117	118	115	114
Surrogate aaa-Trifluorotoluene	%	103	106	104	95	80
Surrogate Toluene-d ₈	%	102	94	97	92	92
Surrogate 4-Bromofluorobenzene	%	90	90	90	91	91

VOCs in soil						
Our Reference		191179-16	191179-17	191179-18	191179-19	191179-20
Your Reference	UNITS	BH7	BH8	ВН9	BH10	BH10
Depth		0.2	0.2	0.2	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1

VOCs in soil						
Our Reference		191179-16	191179-17	191179-18	191179-19	191179-20
Your Reference	UNITS	BH7	BH8	BH9	BH10	BH10
Depth		0.2	0.2	0.2	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	116	113	116	119	115
Surrogate aaa-Trifluorotoluene	%	88	92	86	104	96
Surrogate Toluene-d ₈	%	97	93	101	102	99
Surrogate 4-Bromofluorobenzene	%	95	89	91	95	88

VOCs in soil						
Our Reference		191179-21	191179-22	191179-23	191179-24	191179-25
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		2.5	0.5	1.5	2.3	1.0
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	1	2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	1	<1	<1

VOCs in soil						
Our Reference		191179-21	191179-22	191179-23	191179-24	191179-25
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		2.5	0.5	1.5	2.3	1.0
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	6	<2	<2
styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	2	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	120	122	119	116	123
Surrogate aaa-Trifluorotoluene	%	101	106	93	102	107
Surrogate Toluene-d ₈	%	101	102	103	97	102
Surrogate 4-Bromofluorobenzene	%	86	94	97	94	89

VOCs in soil						
Our Reference		191179-26	191179-27	191179-28	191179-29	191179-30
Your Reference	UNITS	BH12	BH13	BH13	BH14	BH14
Depth		1.8	1.0	2.0	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1

VOCs in soil						
Our Reference		191179-26	191179-27	191179-28	191179-29	191179-30
Your Reference	UNITS	BH12	BH13	BH13	BH14	BH14
Depth		1.8	1.0	2.0	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	117	116	123	123	122
Surrogate aaa-Trifluorotoluene	%	103	100	103	102	105
Surrogate Toluene-d ₈	%	92	98	102	100	98
Surrogate 4-Bromofluorobenzene	%	86	89	92	87	90

VOCs in soil		
Our Reference		191179-31
Your Reference	UNITS	BH14
Depth		2.5
Date Sampled		08/05/2018
Type of sample		Soil
Date extracted	-	10/05/2018
Date analysed	-	11/05/2018
Dichlorodifluoromethane	mg/kg	<1
Chloromethane	mg/kg	<1
Vinyl Chloride	mg/kg	<1
Bromomethane	mg/kg	<1
Chloroethane	mg/kg	<1
Trichlorofluoromethane	mg/kg	<1
1,1-Dichloroethene	mg/kg	<1
trans-1,2-dichloroethene	mg/kg	<1
1,1-dichloroethane	mg/kg	<1
cis-1,2-dichloroethene	mg/kg	<1
bromochloromethane	mg/kg	<1
chloroform	mg/kg	<1
2,2-dichloropropane	mg/kg	<1
1,2-dichloroethane	mg/kg	<1
1,1,1-trichloroethane	mg/kg	<1
1,1-dichloropropene	mg/kg	<1
Cyclohexane	mg/kg	<1
carbon tetrachloride	mg/kg	<1
Benzene	mg/kg	<0.2
dibromomethane	mg/kg	<1
1,2-dichloropropane	mg/kg	<1
trichloroethene	mg/kg	<1
bromodichloromethane	mg/kg	<1
trans-1,3-dichloropropene	mg/kg	<1
cis-1,3-dichloropropene	mg/kg	<1
1,1,2-trichloroethane	mg/kg	<1
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1
dibromochloromethane	mg/kg	<1
1,2-dibromoethane	mg/kg	<1
tetrachloroethene	mg/kg	<1
1,1,1,2-tetrachloroethane	mg/kg	<1
chlorobenzene	mg/kg	<1
Ethylbenzene	mg/kg	<1

VOCs in soil		
Our Reference		191179-31
Your Reference	UNITS	BH14
Depth		2.5
Date Sampled		08/05/2018
Type of sample		Soil
bromoform	mg/kg	<1
m+p-xylene	mg/kg	<2
styrene	mg/kg	<1
1,1,2,2-tetrachloroethane	mg/kg	<1
o-Xylene	mg/kg	<1
1,2,3-trichloropropane	mg/kg	<1
isopropylbenzene	mg/kg	<1
bromobenzene	mg/kg	<1
n-propyl benzene	mg/kg	<1
2-chlorotoluene	mg/kg	<1
4-chlorotoluene	mg/kg	<1
1,3,5-trimethyl benzene	mg/kg	<1
tert-butyl benzene	mg/kg	<1
1,2,4-trimethyl benzene	mg/kg	<1
1,3-dichlorobenzene	mg/kg	<1
sec-butyl benzene	mg/kg	<1
1,4-dichlorobenzene	mg/kg	<1
4-isopropyl toluene	mg/kg	<1
1,2-dichlorobenzene	mg/kg	<1
n-butyl benzene	mg/kg	<1
1,2-dibromo-3-chloropropane	mg/kg	<1
1,2,4-trichlorobenzene	mg/kg	<1
hexachlorobutadiene	mg/kg	<1
1,2,3-trichlorobenzene	mg/kg	<1
Surrogate Dibromofluorometha	%	123
Surrogate aaa-Trifluorotoluene	%	109
Surrogate Toluene-d₃	%	102
Surrogate 4-Bromofluorobenzene	%	93

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		191179-1	191179-2	191179-3	191179-4	191179-5
Your Reference	UNITS	BH1	BH1	BH1	BH2	BH2
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
МТВЕ	μg/L	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	91	93	105	91	108

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		191179-6	191179-7	191179-8	191179-9	191179-10
Your Reference	UNITS	ВН3	вн3	BH4	BH4	BH4
Depth		0.5	1.5	0.5	1.5	2.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
мтве	μg/L	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	105	102	102	107

Envirolab Reference: 191179

Revision No: R01

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		191179-11	191179-12	191179-13	191179-14	191179-15
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH6
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
MTBE	μg/L	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	106	104	95	80

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		191179-16	191179-17	191179-18	191179-19	191179-20
Your Reference	UNITS	BH7	вн8	ВН9	BH10	BH10
Depth		0.2	0.2	0.2	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
МТВЕ	μg/L	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	88	92	86	104	96

Envirolab Reference: 191179

Revision No: R01

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		191179-21	191179-22	191179-23	191179-24	191179-25
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		2.5	0.5	1.5	2.3	1.0
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	1	2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	1	<1	<1
m+p-xylene	mg/kg	<2	<2	6	<2	<2
o-Xylene	mg/kg	<1	<1	1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
МТВЕ	μg/L	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	8	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	106	93	102	107

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		191179-26	191179-27	191179-28	191179-29	191179-30
Your Reference	UNITS	BH12	BH13	BH13	BH14	BH14
Depth		1.8	1.0	2.0	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
мтве	μg/L	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	103	100	103	102	105

Envirolab Reference: 191179

Revision No: R01

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		191179-31	191179-32	191179-33	191179-34	191179-35
Your Reference	UNITS	BH14	B1	B2	ТВ	TS
Depth		2.5	-	-	-	-
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	[NA]	[NA]
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	[NA]	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	[NA]	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	98%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	98%
Ethylbenzene	mg/kg	<1	<1	<1	<1	96%
m+p-xylene	mg/kg	<2	<2	<2	<2	96%
o-Xylene	mg/kg	<1	<1	<1	<1	96%
naphthalene	mg/kg	<1	<1	<1	[NA]	[NA]
МТВЕ	μg/L	<1	<1	<1	[NA]	[NA]
Total +ve Xylenes	mg/kg	<1	<1	<1	[NA]	[NA]
Surrogate aaa-Trifluorotoluene	%	109	93	92	100	75

svTRH (C10-C40) in Soil						
Our Reference		191179-1	191179-2	191179-3	191179-4	191179-5
Your Reference	UNITS	BH1	BH1	BH1	BH2	BH2
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	79	82	80	80	82

svTRH (C10-C40) in Soil						
Our Reference		191179-6	191179-7	191179-8	191179-9	191179-10
Your Reference	UNITS	BH3	вн3	BH4	BH4	BH4
Depth		0.5	1.5	0.5	1.5	2.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	81	81	81	82	81

svTRH (C10-C40) in Soil							
Our Reference		191179-11	191179-12	191179-13	191179-14	191179-15	
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH6	
Depth		0.5	1.5	2.5	0.5	1.5	
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50	
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100	
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100	
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100	
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100	
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50	
Surrogate o-Terphenyl	%	80	81	81	80	80	

svTRH (C10-C40) in Soil							
Our Reference		191179-16	191179-17	191179-18	191179-19	191179-20	
Your Reference	UNITS	BH7	BH8	ВН9	BH10	BH10	
Depth		0.2	0.2	0.2	0.5	1.5	
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018	
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50	
TRH C ₁₅ - C ₂₈	mg/kg	<100	120	200	<100	<100	
TRH C ₂₉ - C ₃₆	mg/kg	<100	120	220	<100	<100	
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	69	<50	<50	
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	69	<50	<50	
TRH >C ₁₆ -C ₃₄	mg/kg	<100	220	340	<100	<100	
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	130	<100	<100	
Total +ve TRH (>C10-C40)	mg/kg	<50	220	540	<50	<50	
Surrogate o-Terphenyl	%	78	92	95	80	80	

svTRH (C10-C40) in Soil						
Our Reference		191179-21	191179-22	191179-23	191179-24	191179-25
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		2.5	0.5	1.5	2.3	1.0
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	79	78	78	77	79

svTRH (C10-C40) in Soil						
Our Reference		191179-26	191179-27	191179-28	191179-29	191179-30
Your Reference	UNITS	BH12	BH13	BH13	BH14	BH14
Depth		1.8	1.0	2.0	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	77	78	79	84	78

svTRH (C10-C40) in Soil				
Our Reference		191179-31	191179-32	191179-33
Your Reference	UNITS	BH14	B1	B2
Depth		2.5	-	-
Date Sampled		08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	78	80	78

PAHs in Soil						
Our Reference		191179-1	191179-2	191179-3	191179-4	191179-5
Your Reference	UNITS	BH1	BH1	BH1	BH2	BH2
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	102	118	107	101	99

PAHs in Soil						
Our Reference		191179-6	191179-7	191179-8	191179-9	191179-10
Your Reference	UNITS	BH3	BH3	BH4	BH4	BH4
Depth		0.5	1.5	0.5	1.5	2.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	102	100	100	102

Envirolab Reference: 191179

PAHs in Soil						
Our Reference		191179-11	191179-12	191179-13	191179-14	191179-15
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH6
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	105	98	103	106

Envirolab Reference: 191179

PAHs in Soil						
Our Reference		191179-16	191179-17	191179-18	191179-19	191179-20
Your Reference	UNITS	BH7	BH8	ВН9	BH10	BH10
Depth		0.2	0.2	0.2	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.1	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	1.9	<0.05	0.1	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	107	102	102	104	98

Envirolab Reference: 191179

PAHs in Soil						
Our Reference		191179-21	191179-22	191179-23	191179-24	191179-25
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		2.5	0.5	1.5	2.3	1.0
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Naphthalene	mg/kg	<0.1	0.2	0.2	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.2	0.2	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	101	98	102	105

Envirolab Reference: 191179

PAHs in Soil						
Our Reference		191179-26	191179-27	191179-28	191179-29	191179-30
Your Reference	UNITS	BH12	BH13	BH13	BH14	BH14
Depth		1.8	1.0	2.0	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	0.1	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	100	100	101	103

Envirolab Reference: 191179

PAHs in Soil				
Our Reference		191179-31	191179-32	191179-33
Your Reference	UNITS	BH14	B1	B2
Depth		2.5	-	-
Date Sampled		08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	128	98	123

Organochlorine Pesticides in soil						
Our Reference		191179-1	191179-4	191179-6	191179-8	191179-11
Your Reference	UNITS	BH1	BH2	ВН3	BH4	BH5
Depth		0.5	0.5	0.5	0.5	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	14/05/2018	11/05/2018	11/05/2018
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	103	88	101	102

Organochlorine Pesticides in soil						
Our Reference		191179-14	191179-16	191179-17	191179-18	191179-19
Your Reference	UNITS	BH6	BH7	BH8	ВН9	BH10
Depth		0.5	0.2	0.2	0.2	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	14/05/2018	11/05/2018	11/05/2018
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	100	91	100	103

Organochlorine Pesticides in soil					
Our Reference		191179-22	191179-25	191179-27	191179-29
Your Reference	UNITS	BH11	BH12	BH13	BH14
Depth		0.5	1.0	1.0	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	99	101	101	99

Organophosphorus Pesticides						
Our Reference		191179-1	191179-4	191179-6	191179-8	191179-11
Your Reference	UNITS	BH1	BH2	ВН3	BH4	BH5
Depth		0.5	0.5	0.5	0.5	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	14/05/2018	11/05/2018	11/05/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	103	103	88	101	102

Organophosphorus Pesticides						
Our Reference		191179-14	191179-16	191179-17	191179-18	191179-19
Your Reference	UNITS	BH6	BH7	BH8	ВН9	BH10
Depth		0.5	0.2	0.2	0.2	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	14/05/2018	11/05/2018	11/05/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	102	100	91	100	103

Organophosphorus Pesticides					
Our Reference		191179-22	191179-25	191179-27	191179-29
Your Reference	UNITS	BH11	BH12	BH13	BH14
Depth		0.5	1.0	1.0	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	99	101	101	99

PCBs in Soil						
Our Reference		191179-1	191179-2	191179-3	191179-4	191179-5
Your Reference	UNITS	BH1	BH1	BH1	BH2	BH2
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	14/05/2018	11/05/2018	14/05/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	103	100	91	103	91

PCBs in Soil						
Our Reference		191179-6	191179-7	191179-8	191179-9	191179-10
Your Reference	UNITS	ВН3	вн3	BH4	BH4	BH4
Depth		0.5	1.5	0.5	1.5	2.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	14/05/2018	14/05/2018	11/05/2018	14/05/2018	14/05/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	88	94	101	91	92

Envirolab Reference: 191179

PCBs in Soil						
Our Reference		191179-11	191179-12	191179-13	191179-14	191179-15
Your Reference	UNITS	BH5	BH5	BH5	ВН6	BH6
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	14/05/2018	14/05/2018	11/05/2018	14/05/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	102	92	91	102	91

PCBs in Soil						
Our Reference		191179-16	191179-17	191179-18	191179-19	191179-20
Your Reference	UNITS	BH7	BH8	ВН9	BH10	BH10
Depth		0.2	0.2	0.2	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	14/05/2018	11/05/2018	11/05/2018	14/05/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	100	91	100	103	90

PCBs in Soil						
Our Reference		191179-21	191179-22	191179-23	191179-24	191179-25
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		2.5	0.5	1.5	2.3	1.0
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	14/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	90	99	101	100	101

PCBs in Soil						
Our Reference		191179-26	191179-27	191179-28	191179-29	191179-30
Your Reference	UNITS	BH12	BH13	BH13	BH14	BH14
Depth		1.8	1.0	2.0	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	14/05/2018	11/05/2018	14/05/2018	11/05/2018	14/05/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	91	101	91	99	90

PCBs in Soil		
Our Reference		191179-31
Your Reference	UNITS	BH14
Depth		2.5
Date Sampled		08/05/2018
Type of sample		Soil
Date extracted	-	10/05/2018
Date analysed	-	14/05/2018
Aroclor 1016	mg/kg	<0.1
Aroclor 1221	mg/kg	<0.1
Aroclor 1232	mg/kg	<0.1
Aroclor 1242	mg/kg	<0.1
Aroclor 1248	mg/kg	<0.1
Aroclor 1254	mg/kg	<0.1
Aroclor 1260	mg/kg	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1
Surrogate TCLMX	%	92

Acid Extractable metals in soil						
Our Reference		191179-1	191179-2	191179-3	191179-4	191179-5
Your Reference	UNITS	BH1	BH1	BH1	BH2	BH2
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Arsenic	mg/kg	5	7	4	5	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	19	38	8	20	27
Copper	mg/kg	6	8	3	5	4
Lead	mg/kg	20	17	15	16	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	10	<1	4	5
Zinc	mg/kg	21	21	1	52	17

Acid Extractable metals in soil						
Our Reference		191179-6	191179-7	191179-8	191179-9	191179-10
Your Reference	UNITS	вн3	вн3	BH4	BH4	BH4
Depth		0.5	1.5	0.5	1.5	2.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Arsenic	mg/kg	5	5	<4	6	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	19	26	11	27	33
Copper	mg/kg	5	5	55	7	4
Lead	mg/kg	33	17	41	18	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	8	3	8	8
Zinc	mg/kg	25	14	47	17	18

Acid Extractable metals in soil						
Our Reference		191179-11	191179-12	191179-13	191179-14	191179-15
Your Reference	UNITS	BH5	BH5	BH5	ВН6	BH6
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Arsenic	mg/kg	4	5	4	8	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	29	9	35	5
Copper	mg/kg	2	4	1	8	14
Lead	mg/kg	14	17	13	14	19
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	10	<1	18	1
Zinc	mg/kg	13	21	2	18	2

Acid Extractable metals in soil						
Our Reference		191179-16	191179-17	191179-18	191179-19	191179-20
Your Reference	UNITS	ВН7	ВН8	ВН9	BH10	BH10
Depth		0.2	0.2	0.2	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Arsenic	mg/kg	14	5	6	11	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	32	32	38	27	5
Copper	mg/kg	42	7	16	2	<1
Lead	mg/kg	10	22	23	15	14
Mercury	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	39	6	24	4	<1
Zinc	mg/kg	54	19	37	7	<1

Envirolab Reference: 191179

Acid Extractable metals in soil						
Our Reference		191179-21	191179-22	191179-23	191179-24	191179-25
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		2.5	0.5	1.5	2.3	1.0
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Arsenic	mg/kg	<4	4	6	<4	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	15	8	7	13
Copper	mg/kg	6	<1	<1	7	<1
Lead	mg/kg	17	15	6	10	14
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	2	<1	<1	<1
Zinc	mg/kg	1	4	<1	1	2

Acid Extractable metals in soil						
Our Reference		191179-26	191179-27	191179-28	191179-29	191179-30
Your Reference	UNITS	BH12	BH13	BH13	BH14	BH14
Depth		1.8	1.0	2.0	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Arsenic	mg/kg	<4	6	5	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	27	6	18	10
Copper	mg/kg	2	3	<1	3	<1
Lead	mg/kg	12	13	15	15	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	6	<1	6	<1
Zinc	mg/kg	<1	15	<1	12	1

Envirolab Reference: 191179

Acid Extractable metals in soil						
Our Reference		191179-31	191179-32	191179-33	191179-36	191179-37
Your Reference	UNITS	BH14	B1	B2	BH8 - [TRIPLICATE]	BH9 - [TRIPLICATE]
Depth		2.5	-	-	0.2	0.2
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Arsenic	mg/kg	<4	5	11	7	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	20	24	53	51
Copper	mg/kg	<1	6	3	10	28
Lead	mg/kg	23	16	15	37	50
Mercury	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Nickel	mg/kg	<1	5	3	6	39
Zinc	mg/kg	<1	14	7	39	36

Envirolab Reference: 191179

Synthetic Pyrethroids in soil						
Our Reference		191179-1	191179-4	191179-6	191179-8	191179-11
Your Reference	UNITS	BH1	BH2	вн3	BH4	BH5
Depth		0.5	0.5	0.5	0.5	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Bifenthrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Cyfluthrin	mg/kg	<2	<2	<2	<2	<2
Cypermethrin	mg/kg	<2	<2	<2	<2	<2
Deltamethrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Esfenvalerate	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Lamda Cyhalothrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Cis Permethrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Trans Permethrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	94	98	94	96	94

Synthetic Pyrethroids in soil						
Our Reference		191179-14	191179-16	191179-17	191179-18	191179-19
Your Reference	UNITS	BH6	BH7	BH8	ВН9	BH10
Depth		0.5	0.2	0.2	0.2	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Bifenthrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Cyfluthrin	mg/kg	<2	<2	<2	<2	<2
Cypermethrin	mg/kg	<2	<2	<2	<2	<2
Deltamethrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Esfenvalerate	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Lamda Cyhalothrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Cis Permethrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Trans Permethrin	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	100	100	102	100	96

Synthetic Pyrethroids in soil					
Our Reference		191179-22	191179-25	191179-27	191179-29
Your Reference	UNITS	BH11	BH12	BH13	BH14
Depth		0.5	1.0	1.0	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Bifenthrin	mg/kg	<0.5	<0.5	<0.5	<0.5
Cyfluthrin	mg/kg	<2	<2	<2	<2
Cypermethrin	mg/kg	<2	<2	<2	<2
Deltamethrin	mg/kg	<0.5	<0.5	<0.5	<0.5
Esfenvalerate	mg/kg	<0.5	<0.5	<0.5	<0.5
Lamda Cyhalothrin	mg/kg	<0.5	<0.5	<0.5	<0.5
Cis Permethrin	mg/kg	<0.5	<0.5	<0.5	<0.5
Trans Permethrin	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	96	92	90	92

Carbamates in Soil						
Our Reference		191179-1	191179-4	191179-6	191179-8	191179-11
Your Reference	UNITS	BH1	BH2	вн3	BH4	BH5
Depth		0.5	0.5	0.5	0.5	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Extracted	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Carbaryl	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Carbofuran	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Molinate	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	94	98	94	96	94

Carbamates in Soil						
Our Reference		191179-14	191179-16	191179-17	191179-18	191179-19
Your Reference	UNITS	ВН6	ВН7	вн8	ВН9	BH10
Depth		0.5	0.2	0.2	0.2	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Extracted	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Carbaryl	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Carbofuran	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Molinate	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	100	100	102	100	96

Carbamates in Soil					
Our Reference		191179-22	191179-25	191179-27	191179-29
Your Reference	UNITS	BH11	BH12	BH13	BH14
Depth		0.5	1.0	1.0	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil
Date Extracted	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Carbaryl	mg/kg	<0.5	<0.5	<0.5	<0.5
Carbofuran	mg/kg	<0.5	<0.5	<0.5	<0.5
Molinate	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d ₁₄	%	96	92	90	92

Misc Soil - Inorg						
Our Reference		191179-1	191179-2	191179-3	191179-4	191179-5
Your Reference	UNITS	BH1	BH1	BH1	BH2	BH2
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		191179-6	191179-7	191179-8	191179-9	191179-10
Your Reference	UNITS	BH3	ВН3	BH4	BH4	BH4
Depth		0.5	1.5	0.5	1.5	2.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Misc Soil - Inorg						
Our Reference		191179-11	191179-12	191179-13	191179-14	191179-15
Your Reference	UNITS	BH5	BH5	BH5	BH6	BH6
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5
Total Phenolics (as Phenol) Misc Soil - Inorg	mg/kg	<5	<5	<5	<5	<5
	mg/kg	<5 191179-16	<5 191179-17	<5 191179-18	<5 191179-19	<5 191179-20
Misc Soil - Inorg	mg/kg UNITS					
Misc Soil - Inorg Our Reference Your Reference Depth		191179-16	191179-17	191179-18	191179-19	191179-20
Misc Soil - Inorg Our Reference Your Reference		191179-16 BH7	191179-17 BH8	191179-18 BH9	191179-19 BH10	191179-20 BH10
Misc Soil - Inorg Our Reference Your Reference Depth		191179-16 BH7 0.2	191179-17 BH8 0.2	191179-18 BH9 0.2	191179-19 BH10 0.5	191179-20 BH10 1.5
Misc Soil - Inorg Our Reference Your Reference Depth Date Sampled		191179-16 BH7 0.2 08/05/2018	191179-17 BH8 0.2 08/05/2018	191179-18 BH9 0.2 08/05/2018	191179-19 BH10 0.5 08/05/2018	191179-20 BH10 1.5 08/05/2018

mg/kg

<5

<5

Envirolab Reference: 191179 Revision No: R01

Total Phenolics (as Phenol)

<5

<5

<5

Misc Soil - Inorg						
Our Reference		191179-21	191179-22	191179-23	191179-24	191179-25
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		2.5	0.5	1.5	2.3	1.0
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg						
Our Reference		191179-26	191179-27	191179-28	191179-29	191179-30
Your Reference	UNITS	BH12	BH13	BH13	BH14	BH14
Depth		1.8	1.0	2.0	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	15/05/2018	15/05/2018	15/05/2018	15/05/2018	15/05/2018
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Misc Soil - Inorg		
Our Reference		191179-31
Your Reference	UNITS	BH14
Depth		2.5
Date Sampled		08/05/2018
Type of sample		Soil
Date prepared	-	10/05/2018
Date analysed	-	15/05/2018
Total Phenolics (as Phenol)	mg/kg	<5

Moisture						
Our Reference		191179-1	191179-2	191179-3	191179-4	191179-5
Your Reference	UNITS	BH1	BH1	BH1	BH2	BH2
Depth		0.5	1.5	2.5	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Moisture	%	22	27	11	20	20
Moisture						
Our Reference		191179-6	191179-7	191179-8	191179-9	191179-10
Your Reference	UNITS	BH3	BH3	BH4	BH4	BH4
Depth		0.5	1.5	0.5	1.5	2.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Moisture	%	19	20	13	18	20
Moisture						
Moisture Our Reference		191179-11	191179-12	191179-13	191179-14	191179-15
	UNITS	191179-11 BH5	191179-12 BH5	191179-13 BH5	191179-14 BH6	191179-15 BH6
Our Reference	UNITS					
Our Reference Your Reference	UNITS	BH5	BH5	BH5	ВН6	ВН6
Our Reference Your Reference Depth	UNITS	BH5 0.5	BH5 1.5	BH5 2.5	BH6 0.5	BH6 1.5
Our Reference Your Reference Depth Date Sampled	UNITS -	BH5 0.5 08/05/2018	BH5 1.5 08/05/2018	BH5 2.5 08/05/2018	BH6 0.5 08/05/2018	BH6 1.5 08/05/2018
Our Reference Your Reference Depth Date Sampled Type of sample	UNITS - -	BH5 0.5 08/05/2018 Soil	BH5 1.5 08/05/2018 Soil	BH5 2.5 08/05/2018 Soil	BH6 0.5 08/05/2018 Soil	BH6 1.5 08/05/2018 Soil
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared	UNITS %	BH5 0.5 08/05/2018 Soil 10/05/2018	BH5 1.5 08/05/2018 Soil 10/05/2018	BH5 2.5 08/05/2018 Soil 10/05/2018	BH6 0.5 08/05/2018 Soil 10/05/2018	BH6 1.5 08/05/2018 Soil 10/05/2018
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed	- -	BH5 0.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH5 1.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH5 2.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH6 0.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH6 1.5 08/05/2018 Soil 10/05/2018 11/05/2018
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture	- -	BH5 0.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH5 1.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH5 2.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH6 0.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH6 1.5 08/05/2018 Soil 10/05/2018 11/05/2018
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture	- -	BH5 0.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH5 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 22	BH5 2.5 08/05/2018 Soil 10/05/2018 11/05/2018	BH6 0.5 08/05/2018 Soil 10/05/2018 11/05/2018 24	BH6 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 23
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference	- - %	BH5 0.5 08/05/2018 Soil 10/05/2018 11/05/2018 15	BH5 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 22	BH5 2.5 08/05/2018 Soil 10/05/2018 11/05/2018 14	BH6 0.5 08/05/2018 Soil 10/05/2018 11/05/2018 24	BH6 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 23
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference	- - %	BH5 0.5 08/05/2018 Soil 10/05/2018 11/05/2018 15	BH5 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 22 191179-17 BH8	BH5 2.5 08/05/2018 Soil 10/05/2018 11/05/2018 14 191179-18 BH9	BH6 0.5 08/05/2018 Soil 10/05/2018 11/05/2018 24 191179-19 BH10	BH6 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 23
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth	- - %	BH5 0.5 08/05/2018 Soil 10/05/2018 11/05/2018 15 191179-16 BH7 0.2	BH5 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 22 191179-17 BH8 0.2	BH5 2.5 08/05/2018 Soil 10/05/2018 11/05/2018 14 191179-18 BH9 0.2	BH6 0.5 08/05/2018 Soil 10/05/2018 11/05/2018 24 191179-19 BH10 0.5	BH6 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 23 191179-20 BH10 1.5
Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed Moisture Moisture Our Reference Your Reference Depth Date Sampled	- - %	BH5 0.5 08/05/2018 Soil 10/05/2018 11/05/2018 15 191179-16 BH7 0.2 08/05/2018	BH5 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 22 191179-17 BH8 0.2 08/05/2018	BH5 2.5 08/05/2018 Soil 10/05/2018 11/05/2018 14 191179-18 BH9 0.2 08/05/2018	BH6 0.5 08/05/2018 Soil 10/05/2018 11/05/2018 24 191179-19 BH10 0.5 08/05/2018	BH6 1.5 08/05/2018 Soil 10/05/2018 11/05/2018 23 191179-20 BH10 1.5 08/05/2018

%

12

18

16

24

Envirolab Reference: 191179 Revision No: R01

Moisture

14

Moisture						
Our Reference		191179-21	191179-22	191179-23	191179-24	191179-25
Your Reference	UNITS	BH10	BH11	BH11	BH11	BH12
Depth		2.5	0.5	1.5	2.3	1.0
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Moisture	%	11	19	16	10	19

Moisture						
Our Reference		191179-26	191179-27	191179-28	191179-29	191179-30
Your Reference	UNITS	BH12	BH13	BH13	BH14	BH14
Depth		1.8	1.0	2.0	0.5	1.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018	11/05/2018	11/05/2018
Moisture	%	7.8	21	10	21	17

Moisture				
Our Reference		191179-31	191179-32	191179-33
Your Reference	UNITS	BH14	B1	B2
Depth		2.5	-	-
Date Sampled		08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil
Date prepared	-	10/05/2018	10/05/2018	10/05/2018
Date analysed	-	11/05/2018	11/05/2018	11/05/2018
Moisture	%	11	20	17

Asbestos ID - soils NEPM - ASB-001						
Our Reference		191179-1	191179-4	191179-6	191179-8	191179-11
Your Reference	UNITS	BH1	BH2	вн3	BH4	BH5
Depth		0.5	0.5	0.5	0.5	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/05/2018	16/05/2018	16/05/2018	16/05/2018	16/05/2018
Sample mass tested	g	616.84	394.88	488.42	382.11	692.01
Sample Description	-	Brown clayey soil & rocks	Brown clayey soil & rocks	Brown clayey soil & rocks	Brown clayey soil & rocks	Beige clayey soi & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	_	_	-	_
FA and AF Estimation*	g	_	_	_	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM - ASB-001						
Our Reference		191179-14	191179-16	191179-17	191179-18	191179-19
Your Reference	UNITS	BH6	BH7	BH8	ВН9	BH10
Depth		0.5	0.2	0.2	0.2	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	16/05/2018	16/05/2018	16/05/2018	16/05/2018	16/05/2018
Sample mass tested	g	581	935.15	606.03	738.43	613.11
Sample Description	-	Brown clayey soil & rocks	Brown clayey soi & rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
Trace Analysis	_	detected No asbestos				
Trace Analysis		detected	detected	detected	detected	detected
Total Asbestos#1	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	_	_	_	_	_
FA and AF Estimation*	g	_	_	_	_	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Envirolab Reference: 191179

Asbestos ID - soils NEPM - ASB-001					
Our Reference		191179-22	191179-25	191179-27	191179-29
Your Reference	UNITS	BH11	BH12	BH13	BH14
Depth		0.5	1.0	1.0	0.5
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	16/05/2018	16/05/2018	16/05/2018	16/05/2018
Sample mass tested	g	539.89	581.06	516.62	681.93
Sample Description	-	Brown clayey soil & rocks			
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg			
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos#1	g/kg	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected			
ACM >7mm Estimation*	g	_	_	-	_
FA and AF Estimation*	g	_	_	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE *1 Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE #2 The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Ext-054	Analysed by MPL Envirolab
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql "total="" 'eq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" can="" conservative="" contribute="" contributing="" false="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'values="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" teq="" teqs="" th="" that="" the="" therefore="" this="" to="" total="" when="" zero'values="" zero.=""></pql>
Org-012VIC	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Samples analysed at Envirolab Melbourne, NATA site accreditation no. 21192.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALIT	Y CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-2
Date extracted	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			11/05/2018	1	11/05/2018	11/05/2018		11/05/2018	11/05/2018
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	97	109
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-014	<1	1	<1	<1	0	97	105
2,2-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	95	109
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0	100	115
1,1-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
Cyclohexane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
Benzene	mg/kg	0.2	Org-014	<0.2	1	<0.2	<0.2	0		[NT]
dibromomethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	88	98
bromodichloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	93	109
trans-1,3-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
Toluene	mg/kg	0.5	Org-014	<0.5	1	<0.5	<0.5	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-014	<1	1	<1	<1	0	95	119
1,2-dibromoethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-014	<1	1	<1	<1	0	87	99
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
Ethylbenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-014	<2	1	<2	<2	0		[NT]
styrene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]
o-Xylene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]

QUALITY CONTROL: VOCs in soil						Dι	uplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-2	
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
isopropylbenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
bromobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
n-propyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
2-chlorotoluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
4-chlorotoluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
tert-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
sec-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
4-isopropyl toluene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
n-butyl benzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
hexachlorobutadiene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	1	<1	<1	0		[NT]	
Surrogate Dibromofluorometha	%		Org-014	120	1	114	117	3	108	112	
Surrogate aaa-Trifluorotoluene	%		Org-014	106	1	91	104	13	97	104	
Surrogate Toluene-d ₈	%		Org-014	103	1	100	103	3	93	105	
Surrogate 4-Bromofluorobenzene	%		Org-014	86	1	99	87	13	96	92	

QUALI	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	191179-22
Date extracted	-			[NT]	11	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			[NT]	11	11/05/2018	11/05/2018		11/05/2018	11/05/2018
Dichlorodifluoromethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0	101	89
cis-1,2-dichloroethene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-014	[NT]	11	<1	<1	0	105	90
2,2-dichloropropane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0	103	88
1,1,1-trichloroethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0	97	90
1,1-dichloropropene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Cyclohexane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Benzene	mg/kg	0.2	Org-014	[NT]	11	<0.2	<0.2	0		[NT]
dibromomethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-014	[NT]	11	<1	<1	0	95	77
bromodichloromethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0	83	85
trans-1,3-dichloropropene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Toluene	mg/kg	0.5	Org-014	[NT]	11	<0.5	<0.5	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0	102	98
1,2-dibromoethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-014	[NT]	11	<1	<1	0	102	80
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Ethylbenzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-014	[NT]	11	<2	<2	0		[NT]
styrene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
o-Xylene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]

QUALI	TY CONTRO	L: VOCs	in soil			Dι	ıplicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	191179-22
1,2,3-trichloropropane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
isopropylbenzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
bromobenzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
n-propyl benzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
2-chlorotoluene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
4-chlorotoluene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
tert-butyl benzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
sec-butyl benzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
4-isopropyl toluene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,2-dichlorobenzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
n-butyl benzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
hexachlorobutadiene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	[NT]	11	<1	<1	0		[NT]
Surrogate Dibromofluorometha	%		Org-014	[NT]	11	119	121	2	70	120
Surrogate aaa-Trifluorotoluene	%		Org-014	[NT]	11	103	113	9	100	80
Surrogate Toluene-d ₈	%		Org-014	[NT]	11	102	102	0	100	100
Surrogate 4-Bromofluorobenzene	%		Org-014	[NT]	11	90	90	0	93	96

QUAL	ITY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	10/05/2018	10/05/2018			[NT]
Date analysed	-			[NT]	21	11/05/2018	11/05/2018			[NT]
Dichlorodifluoromethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
cis-1,2-dichloroethene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
2,2-dichloropropane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,1,1-trichloroethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,1-dichloropropene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Cyclohexane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Benzene	mg/kg	0.2	Org-014	[NT]	21	<0.2	<0.2	0		[NT]
dibromomethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
bromodichloromethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
trans-1,3-dichloropropene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Toluene	mg/kg	0.5	Org-014	[NT]	21	<0.5	<0.5	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,2-dibromoethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Ethylbenzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-014	[NT]	21	<2	<2	0		[NT]
styrene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
o-Xylene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]

QUALI	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
isopropylbenzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
bromobenzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
n-propyl benzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
2-chlorotoluene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
4-chlorotoluene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
tert-butyl benzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
sec-butyl benzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
4-isopropyl toluene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,2-dichlorobenzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
n-butyl benzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
hexachlorobutadiene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
Surrogate Dibromofluorometha	%		Org-014	[NT]	21	120	116	3		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-014	[NT]	21	101	99	2		[NT]
S <i>urrogate</i> Toluene-d ₈	%		Org-014	[NT]	21	101	98	3		[NT]
Surrogate 4-Bromofluorobenzene	%		Org-014	[NT]	21	86	86	0		[NT]

QUALI	TY CONTRO	L: VOCs	in soil			Du	ıplicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	31	10/05/2018	10/05/2018			[NT]
Date analysed	-			[NT]	31	11/05/2018	11/05/2018			[NT]
Dichlorodifluoromethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Chloromethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Vinyl Chloride	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Bromomethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Chloroethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Trichlorofluoromethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,1-Dichloroethene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,1-dichloroethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
cis-1,2-dichloroethene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
bromochloromethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
chloroform	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
2,2-dichloropropane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,2-dichloroethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,1,1-trichloroethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,1-dichloropropene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Cyclohexane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
carbon tetrachloride	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Benzene	mg/kg	0.2	Org-014	[NT]	31	<0.2	<0.2	0		[NT]
dibromomethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,2-dichloropropane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
trichloroethene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
bromodichloromethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
trans-1,3-dichloropropene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,1,2-trichloroethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Toluene	mg/kg	0.5	Org-014	[NT]	31	<0.5	<0.5	0		[NT]
1,3-dichloropropane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
dibromochloromethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,2-dibromoethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
tetrachloroethene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,1,1,2-tetrachloroethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
chlorobenzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Ethylbenzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
bromoform	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-014	[NT]	31	<2	<2	0		[NT]
styrene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
o-Xylene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
	5.9		<u> </u>				<u> </u>		5 A	

QUALI	TY CONTRO	L: VOCs	in soil		_	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
isopropylbenzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
bromobenzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
n-propyl benzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
2-chlorotoluene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
4-chlorotoluene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
tert-butyl benzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,3-dichlorobenzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
sec-butyl benzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,4-dichlorobenzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
4-isopropyl toluene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,2-dichlorobenzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
n-butyl benzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
hexachlorobutadiene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
Surrogate Dibromofluorometha	%		Org-014	[NT]	31	123	118	4		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-014	[NT]	31	109	98	11		[NT]
<i>Surrogate</i> Toluene-d ₈	%		Org-014	[NT]	31	102	96	6		[NT]
Surrogate 4-Bromofluorobenzene	%		Org-014	[NT]	31	93	88	6		[NT]

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-2
Date extracted	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			11/05/2018	1	11/05/2018	11/05/2018		11/05/2018	11/05/2018
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	1	<25	<25	0	85	91
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	1	<25	<25	0	85	91
Benzene	mg/kg	0.2	Org-016	<0.2	1	<0.2	<0.2	0	85	91
Toluene	mg/kg	0.5	Org-016	<0.5	1	<0.5	<0.5	0	83	96
Ethylbenzene	mg/kg	1	Org-016	<1	1	<1	<1	0	85	87
m+p-xylene	mg/kg	2	Org-016	<2	1	<2	<2	0	87	90
o-Xylene	mg/kg	1	Org-016	<1	1	<1	<1	0	87	90
naphthalene	mg/kg	1	Org-014	<1	1	<1	<1	0	[NT]	[NT]
МТВЕ	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	121	1	91	104	13	111	118

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	191179-22
Date extracted	-			[NT]	11	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			[NT]	11	11/05/2018	11/05/2018		11/05/2018	11/05/2018
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	11	<25	<25	0	94	72
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	11	<25	<25	0	94	72
Benzene	mg/kg	0.2	Org-016	[NT]	11	<0.2	<0.2	0	99	74
Toluene	mg/kg	0.5	Org-016	[NT]	11	<0.5	<0.5	0	98	75
Ethylbenzene	mg/kg	1	Org-016	[NT]	11	<1	<1	0	88	68
m+p-xylene	mg/kg	2	Org-016	[NT]	11	<2	<2	0	92	71
o-Xylene	mg/kg	1	Org-016	[NT]	11	<1	<1	0	93	70
naphthalene	mg/kg	1	Org-014	[NT]	11	<1	<1	0	[NT]	[NT]
МТВЕ	μg/L	1	Org-013	[NT]	11	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	11	103	113	9	114	91

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	10/05/2018	10/05/2018			[NT]
Date analysed	-			[NT]	21	11/05/2018	11/05/2018			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	21	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	21	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-016	[NT]	21	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-016	[NT]	21	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-016	[NT]	21	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-016	[NT]	21	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-016	[NT]	21	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-014	[NT]	21	<1	<1	0		[NT]
МТВЕ	μg/L	1	Org-013	[NT]	21	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	21	101	99	2		[NT]

QUALITY CONT	ROL: vTRH	(C6-C10).	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	31	10/05/2018	10/05/2018			[NT]
Date analysed	-			[NT]	31	11/05/2018	11/05/2018			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	31	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	31	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-016	[NT]	31	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-016	[NT]	31	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-016	[NT]	31	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-016	[NT]	31	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-016	[NT]	31	<1	<1	0		[NT]
naphthalene	mg/kg	1	Org-014	[NT]	31	<1	<1	0		[NT]
МТВЕ	μg/L	1	Org-013	[NT]	31	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	31	109	98	11		[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-2
Date extracted	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			11/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	1	<50	<50	0	107	105
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	1	<100	<100	0	87	83
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	1	<100	<100	0	77	73
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	1	<50	<50	0	107	105
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	1	<100	<100	0	87	83
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	1	<100	<100	0	77	73
Surrogate o-Terphenyl	%		Org-003	81	1	79	81	2	88	82

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	191179-22
Date extracted	-			[NT]	11	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			[NT]	11	10/05/2018	10/05/2018		11/05/2018	11/05/2018
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	11	<50	<50	0	98	103
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	11	<100	<100	0	81	83
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	11	<100	<100	0	77	72
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	11	<50	<50	0	98	103
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	11	<100	<100	0	81	83
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	11	<100	<100	0	77	72
Surrogate o-Terphenyl	%		Org-003	[NT]	11	80	80	0	87	78

QUALITY CO	ONTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	10/05/2018	10/05/2018		[NT]	
Date analysed	-			[NT]	21	11/05/2018	11/05/2018		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	21	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	21	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	21	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	21	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	21	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	21	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-003	[NT]	21	79	77	3	[NT]	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	31	10/05/2018	10/05/2018		[NT]	
Date analysed	-			[NT]	31	11/05/2018	11/05/2018		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	[NT]	31	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	[NT]	31	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	[NT]	31	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	[NT]	31	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	[NT]	31	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	[NT]	31	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-003	[NT]	31	78	78	0	[NT]	

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-2
Date extracted	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Naphthalene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	104	93
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	108	99
Phenanthrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	115	104
Anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	110	98
Pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	107	97
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	95	93
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	1	<0.05	<0.05	0	103	97
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	122	1	102	108	6	107	104

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	191179-22
Date extracted	-			[NT]	11	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			[NT]	11	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Naphthalene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	97	87
Acenaphthylene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	100	93
Phenanthrene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	107	99
Anthracene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	104	94
Pyrene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	102	92
Benzo(a)anthracene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	92	89
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	[NT]	11	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	[NT]	11	<0.05	<0.05	0	98	89
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	[NT]	11	99	118	18	101	98

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	10/05/2018	10/05/2018			[NT]
Date analysed	-			[NT]	21	10/05/2018	10/05/2018			[NT]
Naphthalene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	[NT]	21	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	[NT]	21	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	[NT]	21	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-012	[NT]	21	99	104	5		[NT]

QUA	LITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	31	10/05/2018	10/05/2018			[NT]
Date analysed	-			[NT]	31	10/05/2018	10/05/2018			[NT]
Naphthalene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	[NT]	31	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	[NT]	31	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	[NT]	31	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-012	[NT]	31	128	125	2		[NT]

QUALITY CON	NTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-22
Date extracted	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			14/05/2018	1	11/05/2018	11/05/2018		11/05/2018	11/05/2018
нсв	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	98	89
gamma-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	87	89
Heptachlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	93	94
delta-BHC	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	94	89
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	91	86
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	96	93
Dieldrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	100	100
Endrin	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	88	89
pp-DDD	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	93	97
Endosulfan II	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	83	94
Methoxychlor	mg/kg	0.1	Org-005	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	106	1	103	103	0	122	112

QUALITY CO	ONTROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	11	10/05/2018	10/05/2018			[NT]
Date analysed	-			[NT]	11	11/05/2018	11/05/2018			[NT]
нсв	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
alpha-BHC	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-005	[NT]	11	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-005	[NT]	11	102	103	1		[NT]

QUALITY CONT	ROL: Organ	ophosph	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-22
Date extracted	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			14/05/2018	1	11/05/2018	11/05/2018		11/05/2018	11/05/2018
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	101	99
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	97	76
Dimethoate	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	89	98
Fenitrothion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	102	90
Malathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	101	98
Parathion	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	108	107
Ronnel	mg/kg	0.1	Org-008	<0.1	1	<0.1	<0.1	0	101	95
Surrogate TCMX	%		Org-008	106	1	103	103	0	98	92

QUALITY CON	ΓROL: Organ	ophospho	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	11	10/05/2018	10/05/2018			[NT]
Date analysed	-			[NT]	11	11/05/2018	11/05/2018			[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Dichlorvos	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-008	[NT]	11	<0.1	<0.1	0		[NT]
Surrogate TCMX	%		Org-008	[NT]	11	102	103	1		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-2
Date extracted	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			14/05/2018	1	11/05/2018	11/05/2018		11/05/2018	11/05/2018
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	100	100
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCLMX	%		Org-006	106	1	103	103	0	98	102

QUALI	TY CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	191179-22
Date extracted	-			[NT]	11	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			[NT]	11	11/05/2018	11/05/2018		14/05/2018	11/05/2018
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	11	<0.1	<0.1	0	83	104
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	11	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCLMX	%		Org-006	[NT]	11	102	103	1	101	91

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	21	10/05/2018	10/05/2018			
Date analysed	-			[NT]	21	14/05/2018	14/05/2018			
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	21	<0.1	<0.1	0		
Surrogate TCLMX	%		Org-006	[NT]	21	90	90	0	[NT]	[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	31	10/05/2018	10/05/2018		[NT]	
Date analysed	-			[NT]	31	14/05/2018	14/05/2018		[NT]	
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	31	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	31	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	31	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	31	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	31	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	31	<0.1	<0.1	0	[NT]	
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	31	<0.1	<0.1	0	[NT]	
Surrogate TCLMX	%		Org-006	[NT]	31	92	90	2	[NT]	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-2
Date prepared	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			10/05/2018	1	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Arsenic	mg/kg	4	Metals-020	<4	1	5	4	22	106	73
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	95	87
Chromium	mg/kg	1	Metals-020	<1	1	19	18	5	104	93
Copper	mg/kg	1	Metals-020	<1	1	6	6	0	110	113
Lead	mg/kg	1	Metals-020	<1	1	20	19	5	99	92
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	108	108
Nickel	mg/kg	1	Metals-020	<1	1	6	6	0	103	93
Zinc	mg/kg	1	Metals-020	<1	1	21	21	0	102	91

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	191179-22
Date prepared	-			[NT]	11	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Date analysed	-			[NT]	11	10/05/2018	10/05/2018		10/05/2018	10/05/2018
Arsenic	mg/kg	4	Metals-020	[NT]	11	4	<4	0	108	89
Cadmium	mg/kg	0.4	Metals-020	[NT]	11	<0.4	<0.4	0	99	98
Chromium	mg/kg	1	Metals-020	[NT]	11	17	14	19	107	109
Copper	mg/kg	1	Metals-020	[NT]	11	2	2	0	114	115
Lead	mg/kg	1	Metals-020	[NT]	11	14	13	7	104	102
Mercury	mg/kg	0.1	Metals-021	[NT]	11	<0.1	<0.1	0	104	110
Nickel	mg/kg	1	Metals-020	[NT]	11	3	3	0	106	105
Zinc	mg/kg	1	Metals-020	[NT]	11	13	13	0	104	103

QUALITY CONT	ROL: Acid E	extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	10/05/2018	10/05/2018			[NT]
Date analysed	-			[NT]	21	10/05/2018	10/05/2018			[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	21	<4	<4	0		[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	21	<0.4	<0.4	0		[NT]
Chromium	mg/kg	1	Metals-020	[NT]	21	9	9	0		[NT]
Copper	mg/kg	1	Metals-020	[NT]	21	6	5	18		[NT]
Lead	mg/kg	1	Metals-020	[NT]	21	17	17	0		[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	21	<0.1	<0.1	0		[NT]
Nickel	mg/kg	1	Metals-020	[NT]	21	<1	<1	0		[NT]
Zinc	mg/kg	1	Metals-020	[NT]	21	1	1	0		[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	31	10/05/2018	10/05/2018		[NT]	
Date analysed	-			[NT]	31	10/05/2018	10/05/2018		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	31	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	31	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	31	5	4	22	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	31	<1	<1	0	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	31	23	23	0	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	31	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	31	<1	<1	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	31	<1	<1	0	[NT]	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	17	10/05/2018	10/05/2018		[NT]	
Date analysed	-			[NT]	17	10/05/2018	10/05/2018		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	17	5	5	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	17	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	17	32	37	14	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	17	7	7	0	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	17	22	27	20	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	17	0.1	1.3	171	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	17	6	6	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	17	19	22	15	[NT]	

QUALITY CONT	ROL: Acid E	extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	18	10/05/2018	10/05/2018			
Date analysed	-			[NT]	18	10/05/2018	10/05/2018			
Arsenic	mg/kg	4	Metals-020	[NT]	18	6	7	15		
Cadmium	mg/kg	0.4	Metals-020	[NT]	18	<0.4	<0.4	0		
Chromium	mg/kg	1	Metals-020	[NT]	18	38	55	37		
Copper	mg/kg	1	Metals-020	[NT]	18	16	28	55		
Lead	mg/kg	1	Metals-020	[NT]	18	23	25	8		
Mercury	mg/kg	0.1	Metals-021	[NT]	18	<0.1	<0.1	0		
Nickel	mg/kg	1	Metals-020	[NT]	18	24	45	61		
Zinc	mg/kg	1	Metals-020	[NT]	18	37	56	41		

QUALITY CON	TROL: Synth	netic Pyre	throids in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-22
Date extracted	-		Org-012VIC	14/05/2018	19	14/05/2018	14/05/2018		14/05/2018	14/05/2018
Date analysed	-		Org-012VIC	15/05/2018	19	15/05/2018	15/05/2018		15/05/2018	15/05/2018
Bifenthrin	mg/kg	0.5	Org-012VIC	<0.5	19	<0.5	<0.5	0	82	82
Cyfluthrin	mg/kg	2	Org-012VIC	<2	19	<2	<2	0	[NT]	[NT]
Cypermethrin	mg/kg	2	Org-012VIC	<2	19	<2	<2	0	[NT]	[NT]
Deltamethrin	mg/kg	0.5	Org-012VIC	<0.5	19	<0.5	<0.5	0	[NT]	[NT]
Esfenvalerate	mg/kg	0.5	Org-012VIC	<0.5	19	<0.5	<0.5	0	[NT]	[NT]
Lamda Cyhalothrin	mg/kg	0.5	Org-012VIC	<0.5	19	<0.5	<0.5	0	80	84
Cis Permethrin	mg/kg	0.5	Org-012VIC	<0.5	19	<0.5	<0.5	0	[NT]	[NT]
Trans Permethrin	mg/kg	0.5	Org-012VIC	<0.5	19	<0.5	<0.5	0	[NT]	[NT]
Surrogate p-Terphenyl-d ₁₄	%		Org-012	110	19	96	92	4	94	90

QUALITY (CONTROL: (Carbamat	es in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-22
Date Extracted	-			14/05/2018	19	14/05/2018	14/05/2018		14/05/2018	14/05/2018
Date analysed	-			15/05/2018	19	15/05/2018	15/05/2018		15/05/2018	15/05/2018
Carbaryl	mg/kg	0.5	Ext-054	<0.5	19	<0.5	<0.5	0		[NT]
Carbofuran	mg/kg	0.5	Ext-054	<0.5	19	<0.5	<0.5	0	87	93
Molinate	mg/kg	0.5	Ext-054	<0.5	19	<0.5	<0.5	0		[NT]
Surrogate p-Terphenyl-d ₁₄	%		Org-012	110	19	96	92	4	94	90

QUALITY	CONTROL	Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	191179-2
Date prepared	-			15/05/2018	1	10/05/2018	10/05/2018		15/05/2018	15/05/2018
Date analysed	-			15/05/2018	1	15/05/2018	15/05/2018		15/05/2018	15/05/2018
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	100	97

QUALITY	ate prepared -					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-7	191179-22
Date prepared	-			[NT]	11	10/05/2018	10/05/2018		15/05/2018	15/05/2018
Date analysed	-			[NT]	11	15/05/2018	15/05/2018		15/05/2018	15/05/2018
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	[NT]	11	<5	<5	0	104	102

QUALITY	CONTROL:	Misc Soi		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	21	10/05/2018	10/05/2018		[NT]	[NT]
Date analysed	-			[NT]	21	15/05/2018	15/05/2018		[NT]	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	[NT]	21	<5	<5	0	[NT]	[NT]

QUALITY	CONTROL	: Misc So		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	31	10/05/2018	10/05/2018		[NT]	[NT]
Date analysed	-			[NT]	31	15/05/2018	15/05/2018		[NT]	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	[NT]	31	<5	<5	0	[NT]	[NT]

Result Definiti	ons						
NT	Not tested						
NA	Test not required						
INS	nsufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

	Quality Contro	ol Definitions
	Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
	Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
	Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
	LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
	Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
- 1		

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Envirolab Reference: 191179 Page | 81 of 82
Revision No: R01

Report Comments

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 191179-17 for Hg. Therefore a triplicate result has been issued as laboratory sample number 191179-36.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 191179-18 for Cu, Ni. Therefore a triplicate result has been issued as laboratory sample number 191179-37.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

This is reported outside our scope of NATA accreditation.

Synthetic Pyrethroids and carbamates in soil analysed by MPL. report number 210513

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Compaction and Soil Testing Pty Ltd
Attention	Craig Ridley

Sample Login Details	
Your reference	E1256
Envirolab Reference	191419
Date Sample Received	11/05/2018
Date Instructions Received	11/05/2018
Date Results Expected to be Reported	18/05/2018

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	6 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8.4
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst									
Phone: 02 9910 6200	Phone: 02 9910 6200									
Fax: 02 9910 6201	Fax: 02 9910 6201									
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au									

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHsin Water	PCBs in Water	HM in water - dissolved	Total Phenolicsin Water
MW1	✓	✓	✓	✓	✓	✓	✓
MW2	✓	✓	✓	✓	✓	✓	✓
MW3	✓	✓	✓	✓	✓	✓	✓
MW3 B1	✓	√	√	✓	✓	√	✓
	✓	✓ ✓ ✓	-	· .	✓	Ľ	√

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Contact Person: Craig Ridley

Client: Compaction & Soil Testing Services Pty Ltd

CHAIN OF CUSTODY - Client

ENVIROLAB GROUP - National phone number 1300 42 43 44

Project Mgr:							PO No.:								Ph 03 9763 2500 / melbourne@envirolab.com.au						
				Envirolab Quote No. :							EU 02 2102 C200 \ Bisiphit trafficulation produced						- 1				
Address:	ddress:					Date results required: Standard									Brisbane Office - Envirolab Services						
·				Or choose: standard / same day / 1 day / 2 day / 3 day								20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au									
	~	110114 074						ivance i	if urgen	t turnar	ound is	require	d -				-				
		ng NSW 27	0488 002 2		<i>surchai</i> Repor	<i>ges ap</i>		at / en	uis f						Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067						
Phone:	(02) 9675 7522	Mob:			Lab Co				/											virolab.com.au	ĺ
Email:		ounts@cst																			
Signal de Carrella		aig@csts.						Services Services	e de la compa			4.286		72 Y (T Y)		127111		語。語		Comments	
	Sample	information	E E COMPANION DE LA COMPANION					2 44 50	经产品 的		1641 .25 0	Sixequ	ireu x	i valade	387 (\$ 3.04 (B))	AGENTA SI TU	Note: Spread	<u>sparicano</u>	in secures of	1990 HEARINGOILLINGINGS	Esit i périnispus.
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Combo 4	Сотро 3	PCB	VOC	MTBE	втех					•					Provide as mud information about sample as you ca	the
1	MW1		08.05.18	Water	Х		X	Х	Х												
2	MW2	1	08.05.18	Water	Х		X	Х	Х												
3	MW3	···	08.05.18	Water	X	_	Х	Х	X									envir	AL OD	Envirolab Services 12 Ashley St	
- 4	B1		08.05.18			X			<u> </u>			_				-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7~4	hatswood NSW 2087	
5		<u> </u>	08.05.18							Х								Job N	√o:	Ph. (02) 9910 6200	
<i>S</i>	TS	 	08.05.18	Water			 			X										191419	व्य
<u></u>	1	 	00.00.10			_		Ť	-									Date F	eceive	CA1512018	11/3
<u></u>		 	 		 			-	 		<u> </u>								ed By:	al al	 ' '
		 	·			 					 								CpOVA ₂		73.
		+	-				 	\vdash			├──				┟╴╌╅			Caolii i,	: COLC	2Dack	
	-	 	 					-	├	 	 		,				- 	Securit		Breken/None	
		 	+		\vdash		├			├	┼	<u> </u>			 				┼╌╌┤		
		 	 			<u> </u>	-		-		 -		<u> </u>		├ ─┤				┼╌╌		-
		•	<u> </u>	<u> </u>	 			Ц	<u> </u>	<u> </u>	L			L	<u>-</u> -L						
Relinquished by (Company):					Received by (Company):						Lab use only:						ŀ				
Print Name	<u> </u>				Print Name: Pkan						Samples Received Cool or Ambient (circle one) Temperature Received at 36 (if applicable)										
Date & Tim	e:		 -		Date & Time: 11/5/2018 /2:30												(if applicable)				
Signature:				_	Signa	ture:			1.4	Mita	P.	onu /	Divo	Clion	t copy ,	orted / Oin!	by: Ha	ind de Sin in	Rock	/ courier Page No:	
E-	202 Choin of CustofulC	iont feeuari	2M5/12 Mar	sion 5 Page 1 of 1					- VI	me -	LaD C	υργ / .	oiue -	CHCH.	ccopy,	rriik	- KEL	201 111	DUUK	raye No.	

Client Project Name / Number / Site etc (ie report title):

E1256

<u>Sydney Lab_- Envirolab Services</u>

<u>Perth Lab</u> - MP1 Laboratories 16-18 Hayden Ort Myaree, WA 6154

12 Ashley St, Chatswood, NSW 2067

Ph 08 9317 2505 / lab@mpl.com.au

Melhourne Lab - Envirolab Services

Ph 02 9910 6200 / sydney@envirolab.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 shley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 191419

Client Details				
Client Compaction and Soil Testing Pty Ltd				
Attention	Craig Ridley			
Address	Unit 1, 78 Owen St, Glendenning, NSW, 2761			

Sample Details	
Your Reference	<u>E1256</u>
Number of Samples	6 Water
Date samples received	11/05/2018
Date completed instructions received	11/05/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	18/05/2018			
Date of Issue	18/05/2018			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISC	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Alexander Mitchell Maclean, Senior Chemist Jeremy Faircloth, Organics Supervisor Nancy Zhang, Assistant Lab Manager Nick Sarlamis, Inorganics Supervisor **Authorised By**

Jacinta Hurst, Laboratory Manager

VOCs in water				
Our Reference		191419-1	191419-2	191419-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		08/05/2018	08/05/2018	08/05/2018
Type of sample		Water	Water	Water
Date extracted	-	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	14/05/2018	14/05/2018	14/05/2018
Dichlorodifluoromethane	μg/L	<10	<10	<10
Chloromethane	μg/L	<10	<10	<10
Vinyl Chloride	μg/L	<10	<10	<10
Bromomethane	μg/L	<10	<10	<10
Chloroethane	μg/L	<10	<10	<10
Trichlorofluoromethane	μg/L	<10	<10	<10
1,1-Dichloroethene	μg/L	<1	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1	<1
1,1-dichloroethane	μg/L	<1	<1	<1
Cis-1,2-dichloroethene	μg/L	<1	<1	<1
Bromochloromethane	μg/L	<1	<1	<1
Chloroform	μg/L	<1	<1	<1
2,2-dichloropropane	μg/L	<1	<1	<1
1,2-dichloroethane	μg/L	<1	<1	<1
1,1,1-trichloroethane	μg/L	<1	<1	<1
1,1-dichloropropene	μg/L	<1	<1	<1
Cyclohexane	μg/L	<1	<1	<1
Carbon tetrachloride	μg/L	<1	<1	<1
Benzene	μg/L	<1	<1	<1
Dibromomethane	μg/L	<1	<1	<1
1,2-dichloropropane	μg/L	<1	<1	<1
Trichloroethene	μg/L	<1	<1	<1
Bromodichloromethane	μg/L	<1	<1	<1
trans-1,3-dichloropropene	μg/L	<1	<1	<1
cis-1,3-dichloropropene	μg/L	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1
Toluene	μg/L	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1
Bromoform	μg/L	<1	<1	<1

VOCs in water				
Our Reference		191419-1	191419-2	191419-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		08/05/2018	08/05/2018	08/05/2018
Type of sample		Water	Water	Water
m+p-xylene	μg/L	<2	<2	<2
Styrene	μg/L	<1	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1	<1
o-xylene	μg/L	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1
Isopropylbenzene	μg/L	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1
n-propyl benzene	μg/L	<1	<1	<1
2-chlorotoluene	μg/L	<1	<1	<1
4-chlorotoluene	μg/L	<1	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1	<1
Tert-butyl benzene	μg/L	<1	<1	<1
1,2,4-trimethyl benzene	μg/L	<1	<1	<1
1,3-dichlorobenzene	μg/L	<1	<1	<1
Sec-butyl benzene	μg/L	<1	<1	<1
1,4-dichlorobenzene	μg/L	<1	<1	<1
4-isopropyl toluene	μg/L	<1	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1	<1
n-butyl benzene	μg/L	<1	<1	<1
1,2-dibromo-3-chloropropane	μg/L	<1	<1	<1
1,2,4-trichlorobenzene	μg/L	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	93	101
Surrogate toluene-d8	%	102	102	103
Surrogate 4-BFB	%	97	99	95

Envirolab Reference: 191419

Revision No: R00

vTRH(C6-C10)/BTEXN in Water						
Our Reference		191419-1	191419-2	191419-3	191419-4	191419-5
Your Reference	UNITS	MW1	MW2	MW3	B1	ТВ
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018	14/05/2018
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	[NA]
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	[NA]
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	[NA]
МТВЕ	μg/L	<1	<1	<1	[NA]	[NA]
Surrogate Dibromofluoromethane	%	98	93	101	94	102
Surrogate toluene-d8	%	102	102	103	98	94
Surrogate 4-BFB	%	97	99	95	103	97

vTRH(C6-C10)/BTEXN in Water		
Our Reference		191419-6
Your Reference	UNITS	TS
Date Sampled		08/05/2018
Type of sample		Water
Date extracted	-	14/05/2018
Date analysed	-	14/05/2018
Benzene	μg/L	75%
Toluene	μg/L	80%
Ethylbenzene	μg/L	85%
m+p-xylene	μg/L	88%
o-xylene	μg/L	90%
Surrogate Dibromofluoromethane	%	101
Surrogate toluene-d8	%	100
Surrogate 4-BFB	%	106

Envirolab Reference: 191419

Revision No: R00

svTRH (C10-C40) in Water					
Our Reference		191419-1	191419-2	191419-3	191419-4
Your Reference	UNITS	MW1	MW2	MW3	B1
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Water	Water	Water	Water
Date extracted	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	15/05/2018	14/05/2018	14/05/2018	14/05/2018
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	70	87	71	72

PAHs in Water					
Our Reference		191419-1	191419-2	191419-3	191419-4
Your Reference	UNITS	MW1	MW2	MW3	B1
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Water	Water	Water	Water
Date extracted	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Naphthalene	μg/L	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1
Acenaphthene	μg/L	2	<1	<1	2
Fluorene	μg/L	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5
Total +ve PAH's	μg/L	1.5	NIL (+)VE	NIL (+)VE	2.0
Surrogate p-Terphenyl-d14	%	75	108	93	111

Envirolab Reference: 191419

Revision No: R00

PCBs in Water				
Our Reference		191419-1	191419-2	191419-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		08/05/2018	08/05/2018	08/05/2018
Type of sample		Water	Water	Water
Date extracted	-	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	17/05/2018	17/05/2018	17/05/2018
Aroclor 1016	μg/L	<2	<2	<2
Aroclor 1221	μg/L	<2	<2	<2
Aroclor 1232	μg/L	<2	<2	<2
Aroclor 1242	μg/L	<2	<2	<2
Aroclor 1248	μg/L	<2	<2	<2
Aroclor 1254	μg/L	<2	<2	<2
Aroclor 1260	μg/L	<2	<2	<2
Surrogate TCLMX	%	83	124	109

HM in water - dissolved					
Our Reference		191419-1	191419-2	191419-3	191419-4
Your Reference	UNITS	MW1	MW2	MW3	B1
Date Sampled		08/05/2018	08/05/2018	08/05/2018	08/05/2018
Type of sample		Water	Water	Water	Water
Date prepared	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	14/05/2018	14/05/2018	14/05/2018	14/05/2018
Arsenic-Dissolved	μg/L	1	<1	1	1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1
Copper-Dissolved	μg/L	1	11	4	1
Lead-Dissolved	μg/L	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	22	15	57	21
Zinc-Dissolved	μg/L	45	77	22	43

Total Phenolics in Water				
Our Reference		191419-1	191419-2	191419-3
Your Reference	UNITS	MW1	MW2	MW3
Date Sampled		08/05/2018	08/05/2018	08/05/2018
Type of sample		Water	Water	Water
Date extracted	-	14/05/2018	14/05/2018	14/05/2018
Date analysed	-	14/05/2018	14/05/2018	14/05/2018
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05

Method ID	Methodology Summary
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 191419

Revision No: R00

QUAL	ITY CONTROL	: VOCs i	n water			Du	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			14/05/2018	[NT]		[NT]	[NT]	14/05/2018	
Date analysed	-			14/05/2018	[NT]		[NT]	[NT]	14/05/2018	
Dichlorodifluoromethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	μg/L	10	Org-013	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	74	
Cis-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	77	
2,2-dichloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	75	
1,1,1-trichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	72	
1,1-dichloropropene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Dibromomethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	73	
Bromodichloromethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	75	
trans-1,3-dichloropropene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	88	
1,2-dibromoethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	79	
1,1,1,2-tetrachloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromoform	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	μg/L	2	Org-013	<2	[NT]		[NT]	[NT]	[NT]	
Styrene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
o-xylene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTRO	L: VOCs ir	n water			Spike Re	covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
1,2,3-trichloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Isopropylbenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Bromobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
n-propyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
2-chlorotoluene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
4-chlorotoluene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3,5-trimethyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Tert-butyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trimethyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Sec-butyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
4-isopropyl toluene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
n-butyl benzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Hexachlorobutadiene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
1,2,3-trichlorobenzene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-013	92	[NT]		[NT]	[NT]	94	
Surrogate toluene-d8	%		Org-013	98	[NT]		[NT]	[NT]	104	
Surrogate 4-BFB	%		Org-013	99	[NT]		[NT]	[NT]	101	

Envirolab Reference: 191419 Page | 12 of 21 Revision No: R00

QUALITY CONT	ROL: vTRH(C6-C10)/E	BTEXN in Water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			14/05/2018	[NT]		[NT]	[NT]	14/05/2018	
Date analysed	-			14/05/2018	[NT]		[NT]	[NT]	14/05/2018	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	113	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	[NT]		[NT]	[NT]	113	
Benzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	107	
Toluene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	120	
Ethylbenzene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	120	
m+p-xylene	μg/L	2	Org-016	<2	[NT]		[NT]	[NT]	110	
o-xylene	μg/L	1	Org-016	<1	[NT]		[NT]	[NT]	120	
Naphthalene	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
MTBE	μg/L	1	Org-013	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	92	[NT]		[NT]	[NT]	106	
Surrogate toluene-d8	%		Org-016	98	[NT]		[NT]	[NT]	97	
Surrogate 4-BFB	%		Org-016	99	[NT]		[NT]	[NT]	115	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	Spike Re	covery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	191419-2
Date extracted	-			14/05/2018	1	14/05/2018	14/05/2018		14/05/2018	14/05/2018
Date analysed	-			14/05/2018	1	15/05/2018	14/05/2018		14/05/2018	14/05/2018
TRH C ₁₀ - C ₁₄	μg/L	50	Org-003	<50	1	<50	<50	0	101	106
TRH C ₁₅ - C ₂₈	μg/L	100	Org-003	<100	1	<100	<100	0	101	102
TRH C ₂₉ - C ₃₆	μg/L	100	Org-003	<100	1	<100	<100	0	70	78
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-003	<50	1	<50	<50	0	101	106
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-003	<100	1	<100	<100	0	101	102
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-003	<100	1	<100	<100	0	70	78
Surrogate o-Terphenyl	%		Org-003	69	1	70	73	4	95	87

QUAL	ITY CONTROL	_: PAHs ir	ı Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	191419-2
Date extracted	-			14/05/2018	1	14/05/2018	14/05/2018		14/05/2018	14/05/2018
Date analysed	-			14/05/2018	1	14/05/2018	14/05/2018		14/05/2018	14/05/2018
Naphthalene	μg/L	1	Org-012	<1	1	<1	<1	0	96	77
Acenaphthylene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Acenaphthene	μg/L	1	Org-012	<1	1	2	2	0	[NT]	[NT]
Fluorene	μg/L	1	Org-012	<1	1	<1	<1	0	91	85
Phenanthrene	μg/L	1	Org-012	<1	1	<1	<1	0	91	87
Anthracene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Fluoranthene	μg/L	1	Org-012	<1	1	<1	<1	0	90	85
Pyrene	μg/L	1	Org-012	<1	1	<1	<1	0	89	85
Benzo(a)anthracene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Chrysene	μg/L	1	Org-012	<1	1	<1	<1	0	114	85
Benzo(b,j+k)fluoranthene	μg/L	2	Org-012	<2	1	<2	<2	0	[NT]	[NT]
Benzo(a)pyrene	μg/L	1	Org-012	<1	1	<1	<1	0	120	88
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	105	1	75	92	20	101	109

Envirolab Reference: 191419

Revision No: R00

QUALITY	CONTROL	.: PCBs ir	n Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			14/05/2018	1	14/05/2018	14/05/2018		14/05/2018	
Date analysed	-			17/05/2018	1	17/05/2018	17/05/2018		17/05/2018	
Aroclor 1016	μg/L	2	Org-006	<2	1	<2	<2	0	[NT]	
Aroclor 1221	μg/L	2	Org-006	<2	1	<2	<2	0	[NT]	
Aroclor 1232	μg/L	2	Org-006	<2	1	<2	<2	0	[NT]	
Aroclor 1242	μg/L	2	Org-006	<2	1	<2	<2	0	[NT]	
Aroclor 1248	μg/L	2	Org-006	<2	1	<2	<2	0	[NT]	
Aroclor 1254	μg/L	2	Org-006	<2	1	<2	<2	0	99	
Aroclor 1260	μg/L	2	Org-006	<2	1	<2	<2	0	[NT]	
Surrogate TCLMX	%		Org-006	108	1	83	101	20	104	

QUALITY CC		Du	plicate		Spike Re	covery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date prepared	-			14/05/2018	[NT]		[NT]	[NT]	14/05/2018	
Date analysed	-			14/05/2018	[NT]		[NT]	[NT]	14/05/2018	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	102	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Copper-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	101	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	
Zinc-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	

QUALITY CO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			14/05/2018	1	14/05/2018	14/05/2018		14/05/2018	
Date analysed	-			14/05/2018	1	14/05/2018	14/05/2018		14/05/2018	
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	102	

Envirolab Reference: 191419

Revision No: R00

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Dissolved Metals: no preserved sample was received, therefore the unpreserved sample was filtered through 0.45um filter at the lab. Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 191419 Page | 21 of 21

Revision No: R00

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client

Email

LABORATORY DETAILS

Craig Ridley Contact

COMPACTION AND SOIL TESTING SERVICES PTY LTD

Address Unit 1 / 78 Owen St

GLENDENNING NSW 2761

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Unit 16, 33 Maddox St Address Alexandria NSW 2015

02 9675 7522 Telephone 02 9675 7544 Facsimile

craig@csts.net.au

+61 2 8594 0400 Telephone +61 2 8594 0499 Facsimile

Email

au.environmental.sydney@sgs.com

E1256 Project

(Not specified) Order Number

Samples Received Report Due

Thu 10/5/2018 Thu 17/5/2018

Samples 2 SGS Reference

SF178970

SUBMISSION DETAILS

This is to confirm that 2 samples were received on Thursday 10/5/2018. Results are expected to be ready by COB Thursday 17/5/2018. Please quote SGS reference SE178970 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Complete documentation received Yes Yes SGS Sample container provider Sample cooling method Ice Bricks Samples received in correct containers Sample counts by matrix 2 Soil Yes 10/5/2018 Date documentation received Type of documentation received COC Number of eskies/boxes received Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 13.0°C Sufficient sample for analysis Turnaround time requested Standard Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS _ Client COMPACTION AND SOIL TESTING SERVICES PTY LTD Project E1256

COIVIIVII	 01	7 (1 47 (L 1 O1O	

No.	Sample ID	Mercury in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	S1	1	26	7	10	12	8
002	S2	1	26	7	10	12	8

_ CONTINUED OVERLEAF

11/05/2018 Page 2 of 3

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

SAMPLE RECEIPT ADVICE

(CLIENT DE	ETAILS		
С	lient C	OMPACTION AND SOIL TESTIN	G SERVICES PTY LTD	Project E1256
_	SUMMAR	Y OF ANALYSIS —		
			tent	
			Content	
			Moisture	
	No.	Sample ID	Mo	
	001	S1	1	
	002	S2	1	

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

11/05/2018 Page 3 of 3

SGS				C	HAI	IN C)F C	US	TOE	9 Y	ΑN	AL۱	/S S	REC	QUE	ST				•	Page	_ 1 _0	f <u>. 1</u>	
SGS Environmental S	ervices	Compan	y Nam	ie;	Comp	paction	ı & Sol	Tești	ng Sen	vices	Ply Ltd Project Name/No: E12:			56										
Unit 16, 33 Maddox St		Address		_	1/78 (Оwел	Street				14111		F	urchase	Order	No:					· · · · · · · · · · · · · · · · · · ·			
Alexandria NSW 2015		,	,	Glendenning NSW 2761					Results Required By: STA			STA	NDAF	₹D										
Telephone No: (02) 85	940400		Contact Name: Craig Ridley					T	elepho n	e:		(02)	9675	7522										
Facsimile No: (02) 85	940499	Contact								acsimile				9675										
Email: <u>IRFAN.SAYEED@SGS.COM</u>		<u> </u>			OUTSING CHANN	4-24-1-1-1-1	(4° 4 50 000 4						É	mail Re	sults;	,	300	accounts@csts.net.au / craig@csts.net.au						
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	CL10						-											
\$1 .	08.05.18	ŀ				1																		
\$2	08.05.18	2				1										SGS F					kory			
Relinquished By:	FTE Ame	DEAL Dat	e/Tim	e:	09/	80	5 /	20	17	B	eceive	d By:	7)	وينخ	and the second	···		Date/	Time	10/0	5/19	च	35	
Relinquished By:	A . R. 14.16-12	Dat	e/Tim	e:	3:1	1 20	<u></u>			R	eceive	d By:		<u></u>			-	Date/Time						
Samples Intact: (70s/ No			nperal		Ambie	ent / O	hilled			s	ample	Cook	er Sea	Sealed: Yes/ No La			Laboratory Quotation No: CSTS150713060							
		Coi	nmen	ts:	•		<u> </u>						·											

ANALYTICAL REPORT

CLIENT DETAILS -

Client

Telephone

Facsimile

Project

LABORATORY DETAILS

Laboratory

Address

Contact Craig Ridley

COMPACTION AND SOIL TESTING SERVICES PTY LTD

Address Unit 1 / 78 Owen St

GLENDENNING NSW 2761

Manager Huong Crawford

SGS Alexandria Environmental

Unit 16, 33 Maddox St Alexandria NSW 2015

+61 2 8594 0400

02 9675 7522 02 9675 7544

Email craig@csts.net.au

E1256

Order Number (Not specified)

Samples 2

Telephone +61 2 8594 0400 Facsimile +61 2 8594 0499

Email au.environmental.sydney@sgs.com

 SGS Reference
 SE178970 R0

 Date Received
 10/5/2018

 Date Reported
 17/5/2018

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar Beniameen

Chemist

Huong Crawford

Production Manager

Kamrul Ahsan

Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400

www.sgs.com.au

f +61 2 8594 0499

VOC's in Soil [AN433] Tested: 15/5/2018

			S1	S2
			SOIL	SOIL
			- 8/5/2018	- 8/5/2018
PARAMETER	UOM	LOR	SE178970.001	SE178970.002
Benzene	mg/kg	0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	0.2

17/05/2018 Page 2 of 10

SE178970 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 15/5/2018

			S1	S2
			SOIL	SOIL
			- 8/5/2018	- 8/5/2018
PARAMETER	иом	LOR	SE178970.001	SE178970.002
TRH C6-C9	mg/kg	20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25

17/05/2018 Page 3 of 10

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/5/2018

			S1	S2
			SOIL	SOIL
			- 8/5/2018	- 8/5/2018
PARAMETER	UOM	LOR	SE178970.001	SE178970.002
TRH C10-C14	mg/kg	20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210

17/05/2018 Page 4 of 10

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/5/2018

			\$1	S2
			01	02
			SOIL	SOIL
			- 8/5/2018	- 8/5/2018
PARAMETER	UOM	LOR	SE178970.001	SE178970.002
Naphthalene	mg/kg	0.1	<0.1	0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8

17/05/2018 Page 5 of 10

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 16/5/2018

			S1	\$2
			SOIL	SOIL
			-	-
PARAMETER	UOM	LOR	8/5/2018 SE178970.001	8/5/2018 SE178970.002
FARAMETER	OOW	LOR	SE176970.001	SE170970.002
Arsenic, As	mg/kg	3	7	8
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	18	15
Copper, Cu	mg/kg	0.5	6.5	2.8
Lead, Pb	mg/kg	1	15	13
Nickel, Ni	mg/kg	0.5	2.3	1.6
Zinc, Zn	mg/kg	0.5	15	12

17/05/2018 Page 6 of 10

SE178970 R0

Mercury in Soil [AN312] Tested: 16/5/2018

			S 1	S2
			SOIL	SOIL
			-	-
PARAMETER	UOM	LOR	8/5/2018 SE178970.001	8/5/2018 SE178970.002
Mercury	mg/kg	0.05	<0.05	<0.05

17/05/2018 Page 7 of 10

SE178970 R0

Moisture Content [AN002] Tested: 15/5/2018

			S1	S2
			SOIL	SOIL
			- 8/5/2018	- 8/5/2018
PARAMETER	UOM	LOR	SE178970.001	SE178970.002
% Moisture	%w/w	0.5	22	20

17/05/2018 Page 8 of 10

METHOD SUMMARY

SE178970 R0

METHOD _____ METHODOLOGY SUMMARY _

AN002

The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.

AN040/AN320

A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.

AN040

A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.

AN312

Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.

AN403

Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

AN403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN420

Carcinogenic PAHs may be expressed as Benzo(a)pyrene equivalents by applying the BaP toxicity equivalence factor (NEPM 1999, June 2013, B7). These can be reported as the individual PAHs and as a sum of carcinogenic PAHs. The sum is reported three ways, the first assuming all <LOR results are zero, the second assuming all <LOR results are the LOR.

AN433

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

17/05/2018 Page 9 of 10

SE178970 R0

FOOTNOTES

NATA accreditation does not cover the performance of this service.

Indicative data, theoretical holding

time exceeded

Not analysed. NVL Not validated.

Insufficient sample for analysis. IS INR Sample listed, but not received.

Unit of Measure. Limit of Reporting. LOR Raised/lowered Limit of $\uparrow \downarrow$

UOM

Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Totals" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here:

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

17/05/2018 Page 10 of 10

1 item

STATEMENT OF QA/QC **PERFORMANCE**

CLIENT DETAILS LABORATORY DETAILS

Huong Crawford Craig Ridley Manager Contact

COMPACTION AND SOIL TESTING SERVICES PTY LTD SGS Alexandria Environmental Laboratory Client Address Unit 1 / 78 Owen St

Address Unit 16, 33 Maddox St **GLENDENNING NSW 2761** Alexandria NSW 2015

02 9675 7522 +61 2 8594 0400 Telephone Telephone 02 9675 7544 +61 2 8594 0499 Facsimile

Facsimile craig@csts.net.au au.environmental.sydney@sgs.com Email Email

E1256 SE178970 R0 SGS Reference Project (Not specified) 10 May 2018 Order Number Date Received 17 May 2018 Samples Date Reported

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Duplicate

Matrix Spike Mercury in Soil 1 item

> Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES 5 items

SAMPLE SUMMARY

Samples clearly labelled Yes Complete documentation received Yes Ice Bricks Sample container provider SGS Sample cooling method Samples received in correct containers Yes Sample counts by matrix 2 Soil 10/5/2018 COC Date documentation received Type of documentation received Number of eskies/boxes received Samples received in good order Yes 13.0°C Samples received without headspace Yes Sample temperature upon receipt Sufficient sample for analysis Yes Turnaround time requested Standard

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

Member of the SGS Group

S2

SE178970.002

LB147801

08 May 2018

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury in Soil							Method:	ME-(AU)-[ENV]AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE178970.001	LB147892	08 May 2018	10 May 2018	05 Jun 2018	16 May 2018	05 Jun 2018	17 May 2018
S2	SE178970.002	LB147892	08 May 2018	10 May 2018	05 Jun 2018	16 May 2018	05 Jun 2018	17 May 2018
Moisture Content							Method:	ME-(AU)-[ENV]AN0
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE178970.001	LB147805	08 May 2018	10 May 2018	22 May 2018	15 May 2018	20 May 2018	16 May 2018
S2	SE178970.002	LB147805	08 May 2018	10 May 2018	22 May 2018	15 May 2018	20 May 2018	16 May 2018
PAH (Polynuclear Aromati	ic Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE178970.001	LB147716	08 May 2018	10 May 2018	22 May 2018	14 May 2018	23 Jun 2018	17 May 2018
S2	SE178970.002	LB147716	08 May 2018	10 May 2018	22 May 2018	14 May 2018	23 Jun 2018	17 May 2018
otal Recoverable Elemer	nts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE178970.001	LB147908	08 May 2018	10 May 2018	04 Nov 2018	16 May 2018	04 Nov 2018	17 May 2018
S2	SE178970.002	LB147908	08 May 2018	10 May 2018	04 Nov 2018	16 May 2018	04 Nov 2018	17 May 2018
TRH (Total Recoverable H	lydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE178970.001	LB147716	08 May 2018	10 May 2018	22 May 2018	14 May 2018	23 Jun 2018	17 May 2018
S2	SE178970.002	LB147716	08 May 2018	10 May 2018	22 May 2018	14 May 2018	23 Jun 2018	17 May 2018
/OC's in Soil							Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE178970.001	LB147801	08 May 2018	10 May 2018	22 May 2018	15 May 2018	24 Jun 2018	16 May 2018
S2	SE178970.002	LB147801	08 May 2018	10 May 2018	22 May 2018	15 May 2018	24 Jun 2018	16 May 2018
/olatile Petroleum Hydroc	arbons in Soil						Method:	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE178970.001	LB147801	08 May 2018	10 May 2018	22 May 2018	15 May 2018	24 Jun 2018	16 May 2018

10 May 2018

22 May 2018

15 May 2018

24 Jun 2018

16 May 2018

17/5/2018 Page 2 of 12

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	<u>S1</u>	SE178970.001	%	70 - 130%	86
	S2	SE178970.002	%	70 - 130%	90
d14-p-terphenyl (Surrogate)	<u>S1</u>	SE178970.001	%	70 - 130%	90
	<u>\$2</u>	SE178970.002	%	70 - 130%	90
d5-nitrobenzene (Surrogate)	<u>S1</u>	SE178970.001	%	70 - 130%	86
	S2	SE178970.002	%	70 - 130%	86

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

1000 III COII					
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	<u>S1</u>	SE178970.001	%	60 - 130%	84
	<u>\$2</u>	SE178970.002	%	60 - 130%	87
d4-1,2-dichloroethane (Surrogate)	<u>S1</u>	SE178970.001	%	60 - 130%	111
	S2	SE178970.002	%	60 - 130%	104
d8-toluene (Surrogate)	S1	SE178970.001	%	60 - 130%	89
	S2	SE178970.002	%	60 - 130%	88
Dibromofluoromethane (Surrogate)	S1	SE178970.001	%	60 - 130%	105
	S2	SE178970.002	%	60 - 130%	99

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	S1	SE178970.001	%	60 - 130%	84
	S2	SE178970.002	%	60 - 130%	87
d4-1,2-dichloroethane (Surrogate)	S1	SE178970.001	%	60 - 130%	111
	S2	SE178970.002	%	60 - 130%	104
d8-toluene (Surrogate)	S1	SE178970.001	%	60 - 130%	89
	S2	SE178970.002	%	60 - 130%	88
Dibromofluoromethane (Surrogate)	S1	SE178970.001	%	60 - 130%	105
	S2	SE178970.002	%	60 - 130%	99

17/5/2018 Page 3 of 12

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in	n Soil	Method: ME-(AU)-[ENV]AN312
Wording III	ii ooli	Mediod. ME-(AO)-[E147]A14012

Sample Number	Parameter	Units	LOR	Result
LB147892.001	Mercury	ma/ka	0.05	<0.05

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB147716.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
	Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
	Benzo(ghi)perylene	mg/kg	0.1	<0.1
	Total PAH (18)	mg/kg	0.8	<0.8
Surrogates	d5-nitrobenzene (Surrogate)	%	-	84
	2-fluorobiphenyl (Surrogate)	%	-	86
	d14-p-terphenyl (Surrogate)	%	-	88

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Sample Number	Parameter	Units	LOR	Result
LB147908.001	Arsenic, As	mg/kg	3	<3
	Cadmium, Cd	mg/kg	0.3	<0.3
	Chromium, Cr	mg/kg	0.3	<0.3
	Copper, Cu	mg/kg	0.5	<0.5
	Nickel, Ni	mg/kg	0.5	<0.5
	Lead, Pb	mg/kg	1	<1
	Zinc, Zn	mg/kg	0.5	<0.5

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB147716.001	TRH C10-C14	mg/kg	20	<20
	TRH C15-C28	mg/kg	45	<45
	TRH C29-C36	mg/kg	45	<45
	TRH C37-C40	mg/kg	100	<100
	TRH C10-C36 Total	mg/kg	110	<110

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB147801.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	<u>-</u>	108
		d4-1,2-dichloroethane (Surrogate)	%	-	113
		d8-toluene (Surrogate)	%	-	86
		Bromofluorobenzene (Surrogate)	%	-	83
	Totals	Total BTEX	mg/kg	0.6	<0.6

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Sample Number Parameter Units LOR

17/5/2018 Page 4 of 12

METHOD BLANKS

SE178970 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

		•			
Sample Number		Parameter	Units	LOR	Result
LB147801.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	<u>-</u>	108
		d4-1,2-dichloroethane (Surrogate)	%	<u>-</u>	113
		d8-toluene (Surrogate)	%	-	86

17/5/2018 Page 5 of 12

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Method: ME-(AU)-[ENV]AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178969.005	LB147892.014	Mercury	mg/kg	0.05	0.06	0.06	114	7
SE178969.010	LB147892.020	Mercury	mg/kg	0.05	<0.05	<0.05	166	0

Moisture Content

Method: ME-(AU)-[ENV]AN002

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178969.010	LB147805.011	% Moisture	%w/w	0.5	18	18	35	1
SE179023.007	LB147805.022	% Moisture	%w/w	0.5	15	13	37	13
SE179024.003	LB147805.033	% Moisture	%w/w	0.5	18	25	35	32
SE179063.001	LB147805.042	% Moisture	%w/w	0.5	7.7	8.1	43	5

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178962.014	LB147716.025	Naphthalene	mg/kg	0.1	<0.1	0	200	0
		2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
		1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
		Acenaphthylene	mg/kg	0.1	<0.1	0	200	0
		Acenaphthene	mg/kg	0.1	<0.1	0	200	0
		Fluorene	mg/kg	0.1	<0.1	0	200	0
		Phenanthrene	mg/kg	0.1	<0.1	0.02	200	0
		Anthracene	mg/kg	0.1	<0.1	0.02	200	0
		Fluoranthene	mg/kg	0.1	<0.1	0.02	200	0
		Pyrene	mg/kg	0.1	<0.1	0.02	200	0
		Benzo(a)anthracene	mg/kg	0.1	<0.1	0.01	200	0
		Chrysene	mg/kg	0.1	<0.1	0.01	200	0
		Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.02	200	0
		Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.02	200	0
		Benzo(a)pyrene	mg/kg	0.1	<0.1	0.01	200	0
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.01	200	0
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	0	200	0
		Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.01	200	0
		Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0	200	0
		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.242</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.242	134	0
		Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.121</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.121	175	0
		Total PAH (18)	mg/kg	0.8	<0.8	0	200	0
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.43	30	7
	_	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.45	30	5
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.46	30	0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178969.001	LB147908.014	Arsenic, As	mg/kg	3	23	24	34	1
		Cadmium, Cd	mg/kg	0.3	14	13	32	6
		Chromium, Cr	mg/kg	0.3	12	14	34	15
		Copper, Cu	mg/kg	0.5	64	70	31	9
		Nickel, Ni	mg/kg	0.5	53	58	31	10
		Lead, Pb	mg/kg	1	5	4	52	26
		Zinc, Zn	mg/kg	0.5	300	330	31	12
SE178969.010	LB147908.024	Arsenic, As	mg/kg	3	22	27	34	20
		Cadmium, Cd	mg/kg	0.3	12	20	32	46 ②
		Chromium, Cr	mg/kg	0.3	13	13	34	2
		Copper, Cu	mg/kg	0.5	64	75	31	16
		Nickel, Ni	mg/kg	0.5	57	63	31	10
		Lead, Pb	mg/kg	1	5	7	47	44
		Zinc, Zn	mg/kg	0.5	320	350	31	11

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178962.014	LB147716.025	TRH C10-C14	mg/kg	20	<20	0	200	0
		TRH C15-C28	mg/kg	45	<45	0	200	0
		TRH C29-C36	mg/kg	45	<45	0	200	0
		TRH C37-C40	mg/kg	100	<100	0	200	0

17/5/2018 Page 6 of 12

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN403

•									
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178962.014	LB147716.025		TRH C10-C36 Total	mg/kg	110	<110	0	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	0	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	0	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	0	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	0

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Ovininal	Dunlicate	Criteria %	RPD %
Original	•		Parameter			Original	Duplicate		
SE178962.014	LB147801.014	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.3	5.1	50	4
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.6	5.3	50	5
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.2	50	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	4.2	50	2
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE179063.001	LB147801.023	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	0.6	0.7	45	12
			Ethylbenzene	mg/kg	0.1	2.6	3.0	34	14
			m/p-xylene	mg/kg	0.2	16	18	31	12
			o-xylene	mg/kg	0.1	7.8	9.0	31	15
		Polycyclic	Naphthalene	mg/kg	0.1	3.1	3.8	33	19
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.2	5.5	50	5
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.2	5.6	50	7
			d8-toluene (Surrogate)	mg/kg	-	4.6	5.4	50	16
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	5.7	50	17
		Totals	Total Xylenes	mg/kg	0.3	24	27	31	13
			Total BTEX	mg/kg	0.6	27	31	31	13

Volatile Petroleum Hydrocarbons in Soil

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178962.014	LB147801.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.3	5.1	30	4
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.6	5.3	30	5
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.2	30	4
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	4.2	30	2
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE179063.001	LB147801.023		TRH C6-C10	mg/kg	25	110	120	52	13
			TRH C6-C9	mg/kg	20	28	31	97	10
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	5.1	5.4	30	5
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.5	5.8	30	7
			d8-toluene (Surrogate)	mg/kg	-	5.3	5.6	30	4
			Bromofluorobenzene (Surrogate)	mg/kg	_	5.1	5.9	30	15
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	79	90	59	13

17/5/2018 Page 7 of 12

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %

						•	Netriod: ME-(A	· ·
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B147892.002		Mercury	mg/kg	0.05	0.23	0.2	70 - 130	115
AH (Polynuclear	Aromatic Hydrocai	bons) in Soil				M	/lethod: ME-(A	U)-[ENV]A
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
B147716.002		Naphthalene	mg/kg	0.1	3.7	4	60 - 140	93
		Acenaphthylene	mg/kg	0.1	3.6	4	60 - 140	89
		Acenaphthene	mg/kg	0.1	3.5	4	60 - 140	88
		Phenanthrene	mg/kg	0.1	3.5	4	60 - 140	89
		Anthracene	mg/kg	0.1	3.7	4	60 - 140	93
		Fluoranthene	mg/kg	0.1	3.7	4	60 - 140	93
		Pyrene	mg/kg	0.1	3.4	4	60 - 140	85
		Benzo(a)pyrene	mg/kg	0.1	3.6	4	60 - 140	91
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	82
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
otal Recoverable	Elements in Soil/V	Vaste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN\	/JAN040/AI
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB147908.002		Arsenic, As	mg/kg	3	330	336.32	79 - 120	99
		Cadmium, Cd	mg/kg	0.3	450	416.6	69 - 131	109
		Chromium, Cr	mg/kg	0.3	34	35.2	80 - 120	98
		Copper, Cu	mg/kg	0.5	330	370.46	80 - 120	89
		Nickel, Ni	mg/kg	0.5	180	210.88	79 - 120	86
		Lead, Pb	mg/kg	1	91	107.87	79 - 120	84
		Zinc, Zn	mg/kg	0.5	280	301.27	80 - 121	94
RH (Total Recove	erable Hydrocarbo	ns) in Soil				N	/lethod: ME-(A	U)-[ENV]Al
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
LB147716.002		TRH C10-C14	mg/kg	20	33	40	60 - 140	83
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	105
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	93
	TRH F Bands	TRH >C10-C16	mg/kg	25	33	40	60 - 140	83
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	108
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	95
OC's in Soil						N	/lethod: ME-(A	U)-[ENV]AN
Sample Number	r en	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB147801.002	Monocyclic	Benzene	mg/kg	0.1	2.4	2.9	60 - 140	82
	Aromatic	Toluene	mg/kg	0.1	2.5	2.9	60 - 140	87
		Ethylbenzene	mg/kg	0.1	2.6	2.9	60 - 140	90
		m/p-xylene	mg/kg	0.2	5.7	5.8	60 - 140	98
		o-xylene	mg/kg	0.1	2.6	2.9	60 - 140	89
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.8	5	60 - 140	95
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
			malka	_	4.6	5	60 - 140	91
		d8-toluene (Surrogate)	mg/kg		4.0		00 - 140	91
		d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	5	60 - 140	89
/olatile Petroleum	Hydrocarbons in §	Bromofluorobenzene (Surrogate)	· · · · · · · · · · · · · · · · · · ·	<u>-</u>		5		89

Cample Humber		i arameter	Onito	LOIN	Result	LAPECIEU	Officeria /0	itecovery /0
LB147801.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	86
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	76
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.8	5	60 - 140	95
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
		d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	91
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	5	60 - 140	89
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	76

17/5/2018 Page 8 of 12

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil Method: ME-(AU)-[ENV]AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178940.009	LB147892.004	Mercury	mg/kg	0.05	0.16	<0.05	0.2	59 ④

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178962.007	LB147716.024		Naphthalene	mg/kg	0.1	3.6	<0.1	4	89
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	3.4	<0.1	4	85
			Acenaphthene	mg/kg	0.1	3.5	<0.1	4	87
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	3.5	<0.1	4	88
			Anthracene	mg/kg	0.1	3.5	<0.1	4	88
			Fluoranthene	mg/kg	0.1	3.5	<0.1	4	87
			Pyrene	mg/kg	0.1	3.2	<0.1	4	80
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	3.3	<0.1	4	83
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.3</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	3.3	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.5</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	3.5	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.4</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	3.4	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	27	<0.8	-	-
	\$	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	84
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	88
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	88

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Method: ME-(AU)-[ENV]AN040/AN320

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE179158.001	LB147908.004	Arsenic, As	mg/kg	3	45	3	50	83
		Cadmium, Cd	mg/kg	0.3	44	0.3	50	88
		Chromium, Cr	mg/kg	0.3	51	18	50	66 ④
		Copper, Cu	mg/kg	0.5	68	51	50	34 ④
		Nickel, Ni	mg/kg	0.5	98	110	50	-24 ⑨
		Lead, Pb	mg/kg	1	430	660	50	-459 ⑨
		Zinc, Zn	mg/kg	0.5	160	250	50	-176 ⑨

TRH (Total Recoverable Hydrocarbons) in Soil

Method: ME-(AU)-[ENV]AN403

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178962.007	LB147716.024		TRH C10-C14	mg/kg	20	31	<20	40	78
			TRH C15-C28	mg/kg	45	<45	<45	40	88
			TRH C29-C36	mg/kg	45	<45	<45	40	93
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16	mg/kg	25	31	<25	40	78
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	31	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	100
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178940.009	LB147801.004	Monocyclic	Benzene	mg/kg	0.1	2.5	<0.1	2.9	85
		Aromatic	Toluene	mg/kg	0.1	2.6	<0.1	2.9	90
			Ethylbenzene	mg/kg	0.1	2.4	<0.1	2.9	81
			m/p-xylene	mg/kg	0.2	5.3	<0.2	5.8	92
			o-xylene	mg/kg	0.1	2.5	<0.1	2.9	87

17/5/2018 Page 9 of 12

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178940.009	B LB147801.004 Polycyclic		Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.9	5.2	-	98
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.1	5.5	-	103
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.4	-	89
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	4.3	-	88
		Totals	Total Xylenes	mg/kg	0.3	7.9	<0.3	-	-
			Total BTEX	mg/kg	0.6	15	<0.6	-	-

Volatile Petroleum Hydrocarbons in Soil

Bands

Volatile Petroleur	m Hydrocarbons in So	il					Meth	nod: ME-(AU)-[ENV]AN433
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178940.009	LB147801.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	101
			TRH C6-C9	mg/kg	20	21	<20	23.2	89
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.9	5.2	-	98
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	5.1	5.5	-	103
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.4	-	89
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.4	4.3	-	88
		VPH F	Benzene (F0)	mg/kg	0.1	2.5	<0.1	-	-

mg/kg

25

<25

<25

7.25

133

TRH C6-C10 minus BTEX (F1)

17/5/2018 Page 10 of 12

MATRIX SPIKE DUPLICATES

SE178970 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

17/5/2018 Page 11 of 12

FOOTNOTES

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

17/5/2018 Page 12 of 12

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

LABORATORY DETAILS

Craig Ridley Contact

COMPACTION AND SOIL TESTING SERVICES PTY LTD Client

Address Unit 1 / 78 Owen St

GLENDENNING NSW 2761

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Unit 16, 33 Maddox St Address

Alexandria NSW 2015

02 9675 7522 Telephone 02 9675 7544 Facsimile Email

craig@csts.net.au

E1256

+61 2 8594 0499 Facsimile **Email**

Samples Received

Telephone

au.environmental.sydney@sgs.com Thu 10/5/2018

+61 2 8594 0400

Project (Not specified) Order Number

Samples

Report Due Thu 17/5/2018

SF178971 SGS Reference

SUBMISSION DETAILS

This is to confirm that 1 sample was received on Thursday 10/5/2018. Results are expected to be ready by COB Thursday 17/5/2018. Please quote SGS reference SE178971 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Yes Complete documentation received Yes Ice Bricks Sample container provider Client Sample cooling method Samples received in correct containers Sample counts by matrix 1 Water Yes 10/5/2018 Date documentation received Type of documentation received COC Number of eskies/boxes received Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 13.0°C Standard Sufficient sample for analysis Turnaround time requested Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS _ Client COMPACTION AND SOIL TESTING SERVICES PTY LTD Project E1256

SUIVIIVIARY	OF ANALYSIS —						
No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	S1	1	22	7	10	12	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

11/05/2018 Page 2 of 2

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details.

Testing as per this table shall commence immediately unless the client intervenes with a correction .

SGS				С	HA	IN C)F C	:US	тог	DY 8	& Ar	IAL)	/Si	IS RE	QU	EST					Page <u>1</u> of	<u>1</u>
SGS Environmental S	ervices	Company	ıy Nam	ię:	Comp	paction	n & Soi	i Test	ing Se	ryices i	Pty Ltr	<u> </u>		Project I	Name	e/No:	Εí	1256				
Unit 16, 33 Maddox St		Address:	•	_	1/78 Owen Street					Purchase Order No:												
Alexandria NSW 2015				: 10	Glend	dennin	g NSW	/ 2761	1							uired By:	19	TANDAR				
Telephone No: (02) 85		,	Castaat Mana											Telepho				(02) 9675 7522				
Facsimile No: (02) 85	•	Contact	Contact Name:			Ridley	<u>j</u>							Facsimil			<u> </u>	2) 9675 1				
Email: IRFAN.SAYEED@SG	SS.COM	·	-								eri manamana			Email R	esult	s:	ac	counts@	ests.r	nel.au/	craig@csts.net.au	
Client Sample ID	Date Sampled	Lab Sample ID	WATER	SOIL	PRESERVATIVE	NO OF CONTAINERS	CL10															
S1	08.05.18	1				5						1										
																		SE	178	97 1	dria Laboratory COC lay – 2018	
	<u> </u>		<u> </u>		 '		/ _'	 	 	 '	<u> </u>	<u> </u>		 				<u> </u>				
					'	ٰلِــــــــٰ	ابل			<u> </u>	إ	<u></u> _						<u></u>	<u></u>			
Relinquished By: TEST	E Amoute	- U	te/Time				201	8				ed By:		Jess-						10/os	7/18 4:33	5
Relinquished By:		Date	te/Time		321	160	27					ed By:						Date/				
Samples Intact: Yes/ No	ı		rperati		Ambie	ent / C	hille d				Sample	a Cook	er Se	ealed: Y	/es/ l	No No		Labor	atory	Quotati	tion No. CSTS15071	1,3060
		Con	mment	. s .	,	1																

ANALYTICAL REPORT

CLIENT DETAILS -

LABORATORY DETAILS

Laboratory

Craig Ridley Contact

COMPACTION AND SOIL TESTING SERVICES PTY LTD Client

Address Unit 1 / 78 Owen St

GLENDENNING NSW 2761

Huong Crawford Manager

SGS Alexandria Environmental

Address Unit 16, 33 Maddox St Alexandria NSW 2015

02 9675 7522 +61 2 8594 0400 Telephone Telephone 02 9675 7544 Facsimile +61 2 8594 0499

Facsimile

Email craig@csts.net.au Email au.environmental.sydney@sgs.com

E1256 SE178971 R0 Project SGS Reference (Not specified) 10/5/2018 Order Number Date Received 17/5/2018 Samples Date Reported

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar Beniameen

Chemist

Dong Liang

Metals/Inorganics Team Leader

Teresa Nguyen

Organic Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f +61 2 8594 0499 www.sgs.com.au

VOCs in Water [AN433] Tested: 14/5/2018

			S 1
			WATER
			- 8/5/2018
PARAMETER	UOM	LOR	SE178971.001
Benzene	μg/L	0.5	<0.5
Toluene	μg/L	0.5	<0.5
Ethylbenzene	μg/L	0.5	<0.5
m/p-xylene	μg/L	1	<1
o-xylene	μg/L	0.5	<0.5
Total Xylenes	μg/L	1.5	<1.5
Total BTEX	μg/L	3	<3
Naphthalene	μg/L	0.5	<0.5

17/05/2018 Page 2 of 9

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 14/5/2018

			S1
			WATER
PARAMETER	UOM	LOR	SE178971.001
TRH C6-C9	μg/L	40	<40
Benzene (F0)	μg/L	0.5	<0.5
TRH C6-C10	μg/L	50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50

17/05/2018 Page 3 of 9

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 14/5/2018

			S1 WATER - 8/5/2018
PARAMETER	UOM	LOR	SE178971.001
TRH C10-C14	μg/L	50	<50
TRH C15-C28	μg/L	200	<200
TRH C29-C36	μg/L	200	<200
TRH C37-C40	μg/L	200	<200
TRH >C10-C16	μg/L	60	<60
TRH >C16-C34 (F3)	μg/L	500	<500
TRH >C34-C40 (F4)	μg/L	500	<500
TRH C10-C36	μg/L	450	<450
TRH C10-C40	μg/L	650	<650
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60

17/05/2018 Page 4 of 9

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 14/5/2018

			\$1 WATER - 8/5/2018
PARAMETER	UOM	LOR	SE178971.001
Naphthalene	μg/L	0.1	<0.1
2-methylnaphthalene	μg/L	0.1	<0.1
1-methylnaphthalene	μg/L	0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1
Acenaphthene	μg/L	0.1	1.1
Fluorene	μg/L	0.1	<0.1
Phenanthrene	μg/L	0.1	<0.1
Anthracene	μg/L	0.1	0.2
Fluoranthene	μg/L	0.1	0.3
Pyrene	μg/L	0.1	0.1
Benzo(a)anthracene	μg/L	0.1	<0.1
Chrysene	μg/L	0.1	<0.1
Benzo(b&j)fluoranthene	μg/L	0.1	<0.1
Benzo(k)fluoranthene	μg/L	0.1	<0.1
Benzo(a)pyrene	μg/L	0.1	<0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.1
Benzo(ghi)perylene	μg/L	0.1	<0.1
Total PAH (18)	μg/L	1	2

17/05/2018 Page 5 of 9

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 15/5/2018

			S1
			WATER
			- 8/5/2018
PARAMETER	UOM	LOR	SE178971.001
Arsenic, As	μg/L	1	5
Cadmium, Cd	μg/L	0.1	<0.1
Chromium, Cr	μg/L	1	2
Copper, Cu	μg/L	1	5
Lead, Pb	μg/L	1	1
Nickel, Ni	μg/L	1	24
Zinc, Zn	μg/L	5	48

17/05/2018 Page 6 of 9

SE178971 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 16/5/2018

			S1
			WATER
			8/5/2018
PARAMETER	UOM	LOR	SE178971.001
Mercury	mg/L	0.0001	<0.0001

17/05/2018 Page 7 of 9

METHOD SUMMARY

SE178971 R0

- METHOD ----- METHODOLOGY SUMMARY -

ANUZU

Unpreserved water sample is filtered through a 0.45 µm membrane filter and acidified with nitric acid similar to APHA3030B

AN311(Perth)/AN312

Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.

AN318

Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.

AN403

Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.

AN403

Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.

AN403

The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B

AN420

(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).

AN433

VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

17/05/2018 Page 8 of 9

FOOTNOTES

NATA accreditation does not cover Not analysed. UOM Unit of Measure. NVL Limit of Reporting. the performance of this service. Not validated. LOR Indicative data, theoretical holding Insufficient sample for analysis. Raised/lowered Limit of IS $\uparrow \downarrow$ time exceeded INR Sample listed, but not received. Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

17/05/2018 Page 9 of 9

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS _____ LABORATORY DETAILS

Contact Craig Ridley Manager Huong Crawford

Client COMPACTION AND SOIL TESTING SERVICES PTY LTD Laboratory SGS Alexandria Environmental Address Unit 1 / 78 Owen St Address Unit 16, 33 Maddox St

Unit 1 / 78 Owen St
GLENDENNING NSW 2761

Address
Unit 16, 33 Maddox St
Alexandria NSW 2015

 Telephone
 02 9675 7522
 Telephone
 +61 2 8594 0400

 Facsimile
 02 9675 7544
 Facsimile
 +61 2 8594 0499

Email craig@csts.net.au Email au.environmental.sydney@sgs.com

ProjectE1256SGS ReferenceSE178971 R0Order Number(Not specified)Date Received10 May 2018Samples1Date Reported17 May 2018

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client.

This QA/QC Statement must be read in conjunction with the referenced Analytical Report.

The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

Samples clearly labelled Yes Complete documentation received Yes Ice Bricks Sample container provider Client Sample cooling method 1 Water Samples received in correct containers Sample counts by matrix Yes 10/5/2018 COC Date documentation received Type of documentation received Number of eskies/boxes received Samples received in good order Yes 13.0°C Samples received without headspace Yes Sample temperature upon receipt Sufficient sample for analysis Turnaround time requested Yes Standard

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f +61 2 8594 0499

www.sgs.com.au

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Extraction Due Extracted Analysis Due Analysed

Mercury (dissolved) in Water

Sample Name Sample No.

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

S1	SE178971.001	LB147883	08 May 2018	10 May 2018	05 Jun 2018	16 May 2018	05 Jun 2018	16 May 2018
PAH (Polynuclear Aroma	atic Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE178971.001	LB147758	08 May 2018	10 May 2018	15 May 2018	14 May 2018	23 Jun 2018	17 May 2018
Trace Metals (Dissolved)	in Water by ICPMS						Method:	ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
				10.11 00.10	04 Nov 2018	15 May 2018	04 Nov 2018	15 May 2018
S1	SE178971.001	LB147829	08 May 2018	10 May 2018	04 NOV 2016	13 Way 2016	04 NOV 2016	13 Way 2010
		LB147829	08 May 2018	10 May 2018	U4 INOV 2016	13 May 2016		,
TRH (Total Recoverable		LB147829 QC Ref	08 May 2018 Sampled	Received	Extraction Due	Extracted		,
TRH (Total Recoverable	Hydrocarbons) in Water		,	,		•	Method:	ME-(AU)-[ENV]AN40
TRH (Total Recoverable	Hydrocarbons) in Water Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Method: Analysis Due 23 Jun 2018	ME-(AU)-[ENV]AN40: Analysed 17 May 2018
TRH (Total Recoverable Sample Name S1	Hydrocarbons) in Water Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Method: Analysis Due 23 Jun 2018	ME-(AU)-[ENV]AN40: Analysed

Volatile Petroleum Hydro	carbons in Water						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE178971.001	LB147737	08 May 2018	10 May 2018	15 May 2018	14 May 2018	23 Jun 2018	17 May 2018

17/5/2018 Page 2 of 10

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water				Method: M	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	S1	SE178971.001	%	40 - 130%	66
d14-p-terphenyl (Surrogate)	S1	SE178971.001	%	40 - 130%	78
d5-nitrobenzene (Surrogate)	S1	SE178971.001	%	40 - 130%	60
OCs in Water				Method: M	IE-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	S1	SE178971.001	%	40 - 130%	77
d4-1,2-dichloroethane (Surrogate)	S1	SE178971.001	%	40 - 130%	117
d8-toluene (Surrogate)	S1	SE178971.001	%	40 - 130%	106
Dibromofluoromethane (Surrogate)	S1	SE178971.001	%	40 - 130%	113
olatile Petroleum Hydrocarbons in Water				Method: M	IE-(AU)-[ENV]AN4
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	S1	SE178971.001	%	40 - 130%	77
d4-1,2-dichloroethane (Surrogate)	S1	SE178971.001	%	60 - 130%	117
d8-toluene (Surrogate)	S1	SE178971.001	%	40 - 130%	106
Dibromofluoromethane (Surrogate)	S1	SE178971.001	%	40 - 130%	113

17/5/2018 Page 3 of 10

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU)-[I	ENVJAN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
L P147002 001	Moroup	ma/l	0.0004	-0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result
LB147758.001	Naphthalene	μg/L	0.1	<0.1
	2-methylnaphthalene	μg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(ah)anthracene	μg/L	0.1	<0.1
	Benzo(ghi)perylene	μg/L	0.1	<0.1
Surrogate	d5-nitrobenzene (Surrogate)	%	-	68
	2-fluorobiphenyl (Surrogate)	%	-	74
	d14-p-terphenyl (Surrogate)	%	-	88

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result
LB147829.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	μg/L	1	<1
	Zinc, Zn	μg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Number	Parameter	Units	LOR	Result
LB147758.001	TRH C10-C14	μg/L	50	<50
	TRH C15-C28	μg/L	200	<200
	TRH C29-C36	μg/L	200	<200
	TRH C37-C40	μg/L	200	<200

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB147737.001	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5 0.5 0.5 1 0.5 0.5 - -	<0.5
		Ethylbenzene	μg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	127
		d4-1,2-dichloroethane (Surrogate)	%	-	121
		d8-toluene (Surrogate)	%	-	105
		Bromofluorobenzene (Surrogate)	%	-	83

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB147737.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	127
		d4-1,2-dichloroethane (Surrogate)	%	-	121
		d8-toluene (Surrogate)	%	-	105
		Bromofluorobenzene (Surrogate)	%	-	83

17/5/2018 Page 4 of 10

DUPLICATES

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE179017.001	LB147883.014	Mercury	μg/L	0.0001	0.0178	0.0174	200	2
SE179036.002	LB147883.023	Mercury	μg/L	0.0001	<0.0001	<0.0001	200	0

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178971.001	LB147758.023	Naphthalene	μg/L	0.1	<0.1	0.03	200	0
		2-methylnaphthalene	μg/L	0.1	<0.1	0	200	0
		1-methylnaphthalene	μg/L	0.1	<0.1	0.02	200	0
		Acenaphthylene	μg/L	0.1	<0.1	0.03	200	0
		Acenaphthene	μg/L	0.1	1.1	1.5	38	29
		Fluorene	μg/L	0.1	<0.1	0.06	200	0
		Phenanthrene	μg/L	0.1	<0.1	0.03	200	0
		Anthracene	μg/L	0.1	0.2	0.2	86	22
		Fluoranthene	μg/L	0.1	0.3	0.34	62	16
		Pyrene	μg/L	0.1	0.1	0.14	107	15
		Benzo(a)anthracene	μg/L	0.1	<0.1	0.03	200	0
		Chrysene	μg/L	0.1	<0.1	0.02	200	0
		Benzo(b&j)fluoranthene	μg/L	0.1	<0.1	0.02	200	0
		Benzo(k)fluoranthene	μg/L	0.1	<0.1	0.02	200	0
		Benzo(a)pyrene	μg/L	0.1	<0.1	0.04	200	0
		Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1	0	200	0
		Dibenzo(ah)anthracene	μg/L	0.1	<0.1	0	200	0
		Benzo(ghi)perylene	μg/L	0.1	<0.1	0	200	0
	Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.3	0.32	30	6
		2-fluorobiphenyl (Surrogate)	μg/L	-	0.3	0.36	30	9
		d14-p-terphenyl (Surrogate)	μg/L	-	0.4	0.43	30	10

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE179095.006	LB147829.014	Arsenic, As	μg/L	1	<1	<1	200	0
		Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
		Chromium, Cr	μg/L	1	<1	<1	200	0
		Copper, Cu	μg/L	1	<1	<1	200	0
		Lead, Pb	μg/L	1	<1	<1	200	0
		Nickel, Ni	μg/L	1	<1	<1	200	0
		Zinc, Zn	μg/L	5	<5	<5	200	0

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178971.001	LB147758.023		TRH C10-C14	μg/L	50	<50	0	200	0
			TRH C15-C28	μg/L	200	<200	0	200	0
			TRH C29-C36	μg/L	200	<200	0	200	0
			TRH C37-C40	μg/L	200	<200	0	200	0
			TRH C10-C36	μg/L	450	<450	0	200	0
			TRH C10-C40	μg/L	650	<650	0	200	0
		TRH F Bands	TRH >C10-C16	μg/L	60	<60	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	0	200	0
			TRH >C16-C34 (F3)	μg/L	500	<500	0	200	0
			TRH >C34-C40 (F4)	μg/L	500	<500	0	200	0

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178867.001	LB147737.023	Monocyclic	Benzene	μg/L	0.5	<0.5	0.07	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.04	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0.01	200	0
			m/p-xylene	μg/L	1	<1	0.01	200	0
			o-xylene	μg/L	0.5	<0.5	0.02	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0.04	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	6.1	5.64	30	8
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.8	6.01	30	3
			d8-toluene (Surrogate)	μg/L	-	4.9	5.46	30	11

17/5/2018 Page 5 of 10

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (continued)

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178867.001	LB147737.023	Surrogates	Bromofluorobenzene (Surrogate)	μg/L	-	4.2	4.39	30	5
SE178867.009	LB147737.024	Monocyclic	Benzene	μg/L	0.5	<0.5	0.04	200	0
		Aromatic	Toluene	μg/L	0.5	<0.5	0.01	200	0
			Ethylbenzene	μg/L	0.5	<0.5	0.01	200	0
			m/p-xylene	μg/L	1	<1	0.01	200	0
			o-xylene	μg/L	0.5	<0.5	0	200	0
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	0.06	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	6.3	5.78	30	8
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.8	5.77	30	1
			d8-toluene (Surrogate)	μg/L	-	5.3	4.49	30	16
			Bromofluorobenzene (Surrogate)	μg/L	-	4.3	4.02	30	7

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE178867.001	LB147737.023		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0.44	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	6.1	5.64	30	8
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.8	6.01	30	3
			d8-toluene (Surrogate)	μg/L	-	4.9	5.46	30	11
			Bromofluorobenzene (Surrogate)	μg/L	-	4.2	4.39	30	5
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.07	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-0.15	200	0
SE178867.009	LB147737.024		TRH C6-C10	μg/L	50	<50	0	200	0
			TRH C6-C9	μg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	6.3	5.78	30	8
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.8	5.77	30	1
			d8-toluene (Surrogate)	μg/L	-	5.3	4.49	30	16
			Bromofluorobenzene (Surrogate)	μg/L	-	4.3	4.02	30	7
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.04	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-0.07	200	0

17/5/2018 Page 6 of 10

LABORATORY CONTROL SAMPLES

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear	Aromatic Hydrox	varhone) in Water

Method: ME-(AU)-[ENV]AN420

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB147758.002	Naphthalene	μg/L	0.1	29	40	60 - 140	73
	Acenaphthylene	μg/L	0.1	31	40	60 - 140	78
	Acenaphthene	μg/L	0.1	31	40	60 - 140	78
	Phenanthrene	μg/L	0.1	36	40	60 - 140	91
	Anthracene	μg/L	0.1	35	40	60 - 140	87
	Fluoranthene	μg/L	0.1	37	40	60 - 140	93
	Pyrene	μg/L	0.1	36	40	60 - 140	91
	Benzo(a)pyrene	μg/L	0.1	37	40	60 - 140	92
Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.3	0.5	40 - 130	66
	2-fluorobiphenyl (Surrogate)	μg/L	-	0.3	0.5	40 - 130	66
	d14-p-terphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	70

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB147829.002	Arsenic, As	μg/L	1	20	20	80 - 120	101
	Cadmium, Cd	μg/L	0.1	22	20	80 - 120	108
	Chromium, Cr	μg/L	1	22	20	80 - 120	111
	Copper, Cu	μg/L	1	22	20	80 - 120	110
	Lead, Pb	μg/L	1	22	20	80 - 120	111
	Nickel, Ni	μg/L	1	21	20	80 - 120	107
	Zinc, Zn	μg/L	5	21	20	80 - 120	104

TRH (Total Recoverable Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN403

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB147758.002		TRH C10-C14	μg/L	50	920	1200	60 - 140	77
		TRH C15-C28	μg/L	200	1000	1200	60 - 140	87
		TRH C29-C36	μg/L	200	1100	1200	60 - 140	92
	TRH F Bands	TRH >C10-C16	μg/L	60	950	1200	60 - 140	79
		TRH >C16-C34 (F3)	μg/L	500	1100	1200	60 - 140	90
		TRH >C34-C40 (F4)	μg/L	500	600	600	60 - 140	100

VOCs in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB147737.002	Monocyclic	Benzene	μg/L	0.5	51	45.45	60 - 140	111
	Aromatic	Toluene	μg/L	0.5	51	45.45	60 - 140	113
		Ethylbenzene	μg/L	0.5	52	45.45	60 - 140	114
		m/p-xylene	μg/L	1	100	90.9	60 - 140	114
		o-xylene	μg/L	0.5	52	45.45	60 - 140	114
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	3.6	5	60 - 140	71
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.3	5	60 - 140	106
		d8-toluene (Surrogate)	μg/L	-	5.0	5	60 - 140	101
		Bromofluorobenzene (Surrogate)	μg/L	-	5.6	5	60 - 140	112

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB147737.002		TRH C6-C10	μg/L	50	950	946.63	60 - 140	100
		TRH C6-C9	μg/L	40	670	818.71	60 - 140	82
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	3.6	5	60 - 140	71
		d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.3	5	60 - 140	106
		d8-toluene (Surrogate)	μg/L	-	5.0	5	60 - 140	101
		Bromofluorobenzene (Surrogate)	μg/L	-	5.6	5	60 - 140	112
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	640	639.67	60 - 140	100

17/5/2018 Page 7 of 10

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Method: ME-(AU)-[ENV]AN311(Perth)/AN312

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE179095.006	LB147883.004	Mercury	mg/L	0.0001	0.0087	<0.0001	0.008	109

Trace Metals (Dissolved) in Water by ICPMS

Method: ME-(AU)-[ENV]AN318

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178971.001	LB147829.004	Arsenic, As	μg/L	1	28	5	20	112
		Cadmium, Cd	μg/L	0.1	22	<0.1	20	109
		Chromium, Cr	μg/L	1	23	2	20	107
		Copper, Cu	μg/L	1	25	5	20	103
		Lead, Pb	μg/L	1	23	1	20	107
		Nickel, Ni	μg/L	1	43	24	20	97
		Zinc, Zn	μg/L	5	68	48	20	101

VOCs in Water

Method: ME-(AU)-[ENV]AN433

								(, fm
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178867.002	LB147737.025	Monocyclic	Benzene	μg/L	0.5	54	<0.5	45.45	119
		Aromatic	Toluene	μg/L	0.5	57	<0.5	45.45	125
			Ethylbenzene	μg/L	0.5	53	<0.5	45.45	118
			m/p-xylene	μg/L	1	110	<1	90.9	122
			o-xylene	μg/L	0.5	55	<0.5	45.45	121
		Polycyclic	Naphthalene	μg/L	0.5	51	<0.5	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	6.1	-	102
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.1	5.6	-	102
			d8-toluene (Surrogate)	μg/L	-	4.9	4.6	-	98
			Bromofluorobenzene (Surrogate)	μg/L	-	5.6	3.9	-	112

Volatile Petroleum Hydrocarbons in Water

Method: ME-(AU)-[ENV]AN433

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE178867.002	LB147737.025		TRH C6-C10	μg/L	50	870	<50	946.63	92
			TRH C6-C9	μg/L	40	740	<40	818.71	90
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.1	6.1	-	102
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.1	5.6	-	102
			d8-toluene (Surrogate)	μg/L	-	4.9	4.6	-	98
			Bromofluorobenzene (Surrogate)	μg/L	-	5.6	3.9	-	112
		VPH F	Benzene (F0)	μg/L	0.5	54	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	μg/L	50	540	<50	639.67	85

17/5/2018 Page 8 of 10

SE178971 R0

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

17/5/2018 Page 9 of 10

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
 QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- 3 Results less than 5 times LOR preclude acceptance criteria for RPD.
- Recovery failed acceptance criteria due to matrix interference.
- ® Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- © LOR was raised due to sample matrix interference.
- ① LOR was raised due to dilution of significantly high concentration of analyte in sample.
- ® Reanalysis of sample in duplicate confirmed sample heterogeneity and inconsistency of results.
- Recovery failed acceptance criteria due to sample heterogeneity.
- © LOR was raised due to high conductivity of the sample (required dilution).
- † Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

17/5/2018 Page 10 of 10